首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   54篇
  国内免费   11篇
  532篇
  2023年   11篇
  2022年   9篇
  2021年   19篇
  2020年   24篇
  2019年   32篇
  2018年   41篇
  2017年   18篇
  2016年   10篇
  2015年   24篇
  2014年   39篇
  2013年   54篇
  2012年   33篇
  2011年   42篇
  2010年   31篇
  2009年   17篇
  2008年   27篇
  2007年   21篇
  2006年   20篇
  2005年   20篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有532条查询结果,搜索用时 15 毫秒
21.
In important and severe neurodegenerative pathologies, 7-ketocholesterol, mainly resulting from cholesterol autoxidation, may contribute to dys- or demyelination processes. On various cell types, 7-ketocholesterol has often been shown to induce a complex mode of cell death by apoptosis associated with phospholipidosis. On 158N murine oligodendrocytes treated with 7-ketocholesterol (20 μg/mL corresponding to 50 μM, 24–48 h), the induction of a mode of cell death by apoptosis characterised by the occurrence of cells with condensed and/or fragmented nuclei, caspase activation (including caspase-3) and internucleosomal DNA fragmentation was observed. It was associated with a loss of transmembrane mitochondrial potential (ΔΨm) measured with JC-1, with a dephosphorylation of Akt and GSK3 (especially GSK3β), and with degradation of Mcl-1. With α-tocopherol (400 μM), which was capable of counteracting 7-ketocholesterol-induced apoptosis, Akt and GSK3β dephosphorylation were inhibited as well as Mcl-1 degradation. These data underline that the potential protective effects of α-tocopherol against 7-ketocholesterol-induced apoptosis do not depend on the cell line considered, and that the cascade of events (Akt/GSK3β/Mcl-1) constitutes a link between 7-ketocholesterol-induced cytoplasmic membrane dysfunctions and mitochondrial depolarisation leading to apoptosis.  相似文献   
22.
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells.  相似文献   
23.
Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.  相似文献   
24.
A-kinase anchoring proteins (AKAPs) represent a family of structurally diverse proteins, all of which bind PKA. A member of this family is glycogen synthase kinase 3β (GSK3β) interaction protein (GSKIP). GSKIP interacts with PKA and also directly interacts with GSK3β. The physiological function of the GSKIP protein in vivo is unknown. We developed and characterized a conditional knock-out mouse model and found that GSKIP deficiency caused lethality at birth. Embryos obtained through Caesarean section at embryonic day 18.5 were cyanotic, suffered from respiratory distress, and failed to initiate breathing properly. Additionally, all GSKIP-deficient embryos showed an incomplete closure of the palatal shelves accompanied by a delay in ossification along the fusion area of secondary palatal bones. On the molecular level, GSKIP deficiency resulted in decreased phosphorylation of GSK3β at Ser-9 starting early in development (embryonic day 10.5), leading to enhanced GSK3β activity. At embryonic day 18.5, GSK3β activity decreased to levels close to that of wild type. Our findings reveal a novel, crucial role for GSKIP in the coordination of GSK3β signaling in palatal shelf fusion.  相似文献   
25.
Upon fertilization, the mammalian egg undergoes a precise series of signaling events that orchestrate its conversion into a zygote. Mouse eggs contain acentrosomal spindle poles when arrested at meiotic metaphase II. The meiotic spindle is thought to provide a scaffold that mediates spatial and temporal regulation of the signaling pathways orchestrating post-fertilization events. Many kinases have been found to be enriched at the MII meiotic spindle, such as Protein Kinase C (PKC), and are thought to have an important role in regulating signaling events initiated through fertilization. In this study phosphorylated PKCζ (p-PKCζ) and Glycogen Synthase Kinase 3β (GSK3β) were found to be enriched at both acentrosomal spindle poles and the kinetochore region. Phosphorylated PKCζ (p-PKCζ) was immunopurified from MII eggs and was found to co-localize with known microtubule stabilizing components found in somatic cells, including GSK3β and Partition deficit protein 6 (Par6). Both fluorescence resonance energy transfer (FRET) and immunofluorescence confirmed the existence and close association of these proteins with p-PKCζ at the meiotic spindle. When GSK3β is phosphorylated on ser9 its activity is inhibited and the spindle is stabilized. However, when GSK3β is dephosphorylated (on ser9) it becomes active and the spindle is destabilized. The mechanism by which p-PKCζ maintains spindle organization appears to be through GSK3β and suggests that p-PKCζ phosphorylates GSK3β on the ser9 position inactivating GSK3β and consequently maintaining spindle stability during meiotic metaphase arrest.  相似文献   
26.
27.
Glycogen synthase kinase-3β (GSK3β) controls the survival of osteoblasts during bone development through Wnt canonical signaling. GSK3β is a key factor for osteoblastogenesis, but relatively less is known regarding its role in osteoblast apoptosis. Genotoxic stress induced by etoposide promoted apoptotic signaling by GSK3β activation in C3H10T1/2 cells, a mouse mesenchymal cell line. Etoposide led to the time-dependent activation of GSK3β and caspase-3, which resulted in PARP cleavage. LiCl (a specific inhibitor) and siRNA (gene knock-down) of GSK3β prevented the effects of etoposide on apoptosis. Staurosporine also induced apoptosis in C3H10T1/2 cells, but LiCl could not rescue. Bcl-2 was decreased in the cells by exposure to etoposide. LiCl completely recovered Bcl-2 expression as shown by both the mRNA and the protein expression levels. In conclusion, etoposide-induced apoptosis in C3H10T1/2 cells is mediated by GSK3β, which leads to caspase-3 activation via decrease in Bcl-2 expression. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
28.
Glycogen synthase kinase 3β (GSK3β) is believed to play important roles in the regulation of synaptic plasticity, cell survival and circadian rhythms in the mature CNS. However, although several studies have been focused on the GSK3β, little is known about GSK3β changes in glial cells under neuropathological conditions. In this study, we evaluated the expressions of molecules associated with the GSK3β signaling pathway, following the induction of an excitotoxic lesion in mouse brain by kainic acid (KA) injection, which caused pyramidal cell degeneration in the hippocampal CA3 region. In injured hippocampi, Ser47-Akt (protein kinase B, PKB) phosphorylation increased from 4 h until 1 day post-injection (PI). Ser9-GSK3β and Ser133-cAMP responsive element-binding protein (CREB) phosphorylations showed similar spatiotemporal patterns in hippocampi at 1 day until 3 days PI. Double immunohistochemistry also showed that these phosphorylated forms of Akt, GSK3β and CREB were expressed in astrocytes. For the first time, our data demonstrate the injury-induced astrocytic changes in the levels of phosphorylation of Akt, -GSK3β and -CREB in vivo, which may reflect mechanisms of glial cells protection or adaptive response to damage. DW Kim and JH Lee contributed equally to this work.  相似文献   
29.
30.

Background

5′-Nitro-indirubinoxime (5′-NIO) is a new derivative of indirubin that exhibits anti-cancer activity in a variety of human cancer cells. However, its mechanism has not been fully clarified.

Methods

Human salivary gland adenocarcinoma (SGT) cells were used in this study. Western blot and RT-PCR analyses were performed to determine cellular Notch levels. The cell cycle stage and level of apoptosis were analyzed using flow cytometry analysis.

Results

5′-NIO significantly inhibited the mRNA levels of Notch-1 and Notch-3 and their ligands (Delta1, 2, 3, and Jagged-2) in SGT cells. Immunocytochemistry analysis showed that 5′-NIO specifically decreased the level of Notch-1 in the nucleus. In addition, 5′-NIO induced G1 cell cycle arrest by reducing levels of CDK4 and CDK6 in SGT cells. Using flow cytometry and immunoblotting analysis, we found that 5′-NIO induces apoptosis following the secretion of cytochrome c and the activation of caspase-3 and caspase-7. Intracellular Notch-1 overexpression led to a decrease in G1 phase arrest and an inhibition of 5′-NIO-induced apoptosis.

Conclusion

These observations suggest that 5′-NIO induces cell cycle arrest and apoptosis by down-regulating Notch-1 signaling.

General significance

This study identifies a new mechanism of 5′-NIO-mediated anti-tumor properties. Thus, 5′-NIO could be used as a candidate for salivary gland adenocarcinoma therapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号