全文获取类型
收费全文 | 820篇 |
免费 | 17篇 |
国内免费 | 18篇 |
专业分类
855篇 |
出版年
2023年 | 3篇 |
2022年 | 8篇 |
2021年 | 4篇 |
2020年 | 3篇 |
2019年 | 19篇 |
2018年 | 36篇 |
2017年 | 7篇 |
2016年 | 8篇 |
2015年 | 7篇 |
2014年 | 74篇 |
2013年 | 85篇 |
2012年 | 36篇 |
2011年 | 107篇 |
2010年 | 38篇 |
2009年 | 47篇 |
2008年 | 43篇 |
2007年 | 46篇 |
2006年 | 44篇 |
2005年 | 47篇 |
2004年 | 13篇 |
2003年 | 18篇 |
2002年 | 16篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 4篇 |
1990年 | 2篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 6篇 |
1984年 | 17篇 |
1983年 | 16篇 |
1982年 | 8篇 |
1981年 | 6篇 |
1980年 | 10篇 |
1979年 | 12篇 |
1978年 | 8篇 |
1977年 | 3篇 |
1976年 | 4篇 |
1975年 | 4篇 |
1974年 | 1篇 |
1973年 | 3篇 |
排序方式: 共有855条查询结果,搜索用时 15 毫秒
101.
To assess the biological safety of Fe3O4 nanoparticles (NPs), the oxidative-damage effect of these NPs was studied. Twenty-five Kunming mice were exposed to Fe3O4 NPs by intraperitoneai injection daily for 1 week at doses of 0, 10, 20, and 40 mg.kg1. Five Kunming mice were also injected with 40 mg.kg 1 ordinary Fe3O4 particles under the same physiological conditions. Biomarkers of reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) in the hepatic and brain tissues were detected. Results showed that no significant difference in oxidative damage existed at concentrations lower than 10 mg.kg i for NPs compared with the control group. Fe3O4 NP concentration had obvious dose-effect relationships (P〈 0.05 or P 〈 0.01) with ROS level, GSH content, and MDA content in mouse hepatic and brain tissues at〉20 mg.kg 1 concentrations. To some extent, ordinary Fe3O4 particles with 40mg.kg -1 concentration also affected hepatic and brain tissues in mice. The biological effect was similar to Fe3O4 NPs at 10 mg. kg-1 concentration. Thus, Fe3O4 NPs had significant damage effects on the antioxidant defense system in the hepatic and brain tissues of mice, whereas ordinary Fe3O4 had less influence than Fe3O4 NPs at the same concentration. 相似文献
102.
Effect of triethylenepentaminehexaacetic acid on the renal damage in cadmium-treated Syrian hamsters 总被引:2,自引:0,他引:2
Toshiaki Shibasaki Q. -Y. Xu Iwao Ohno Fumio Ishimoto Osamu Sakai 《Biological trace element research》1995,50(2):157-165
Cadmium (Cd)-induced nephropathy was treated by triethylene-pentaminehexaacetic acid (TTHA) in male Syrian hamsters. Hamsters
injected three times a week with 3 mg/kg body wt CdCl2 showed proteinuria, urinaryN-acetyl-β-d-inglucosaminidase (NAG), and fractional excretion of sodium (FENa) when compared to saline-injected control. Cd-treated hamsters
injected ip with TTHA 10 mg/kg body wt five times a week showed reduction of renal damage, including reductions in urinary
protein (from 6.7±2.2 to 4.3±0.5 mg/d) and NAG (0.17±0.06 to 0.04±0.02 U/d). Urinary excretion of Cd was significantly increased
(from 87±51.3 to 3052±1485 mg/L) by TTHA administration. Cd concentration in renal cortical tissue was slightly reduced (26.4±3.0
to 21.8±2.7 mg/g. protein). Excretion of malondialdehyde (MDA) was increased only in Cd-injected hamsters (to 2.1±1.6 nM/L), and elevated MDA in renal cortical tissue was not reduced by the administration of TTHA (1041±105 vs 1104±358 nM/g protein). Glutathione (GSH) concentration in the renal cortex was significantly elevated after Cd administration and further
increased after TTHA administration (5.5±2.1 to 9.8±2.0 μg/50 mg protein). There were no marked effects on creatinine clearance
(Ccr) and hematocrit. Moreover, renal morphological changes were improved significantly by treatment with TTHA.
We demonstrated the efficacy of TTHA in the treatment of Cd-induced nephropathy in hamsters. Although the precise mechanism
of the TTHA effects on Cd-induced nephropathy has not been elucidated, it might involve GSH reducing the elevated MDA concentration
in renal tissue. 相似文献
103.
104.
Renu Khanna-Chopra Anjana Jajoo Vimal Kumar Semwal 《Biochemical and biophysical research communications》2011,(4):522
Thermal stability of antioxidant defense enzymes superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11) was studied in chloroplasts and mitochondria of leaf and inflorescence in heat adaptive weed Chenopodium album. Leaf samples were taken in March (31 °C/14 °C) and young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). Leaf and INF chloroplast and mitochondrial fractions were subjected to elevated temperatures in vitro (5–100 °C) for 30′. SOD and APX showed activity even after boiling treatment in both chloroplast and mitochondria of leaf and INF. SOD was more heat stable than APX in both chloroplasts and mitochondria in both the tissues. Chloroplast contained more heat stable SOD and APX isozymes than mitochondria in both leaf and INF. To the best of our knowledge this is the first report showing presence of thermostable APX isozymes (100 °C for 30′) in chloroplasts and mitochondria in C. album. Heat stable isozymes of SOD and APX in chloroplasts and mitochondria in leaves and inflorescence may contribute to heat tolerance in C. album. 相似文献
105.
Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase 总被引:14,自引:0,他引:14
The effects of exogenous silicon (Si) on plant growth, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase, and concentrations of ascorbate and glutathione were investigated in cucumber (Cucumis sativus L.) plants treated with excess manganese (Mn) (600 microM). Compared with the treatment of normal Mn (10 microM), excess Mn significantly increased H2O2 concentration and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances. The leaves showed apparent symptoms of Mn toxicity and the plant growth was significantly inhibited by excess Mn. The addition of Si significantly decreased lipid peroxidation caused by excess Mn, inhibited the appearance of Mn toxicity symptoms, and improved plant growth. This alleviation of Mn toxicity by Si was related to a significant increase in the activities of SOD, APX, DHAR and GR and the concentrations of ascorbate and glutathione. 相似文献
106.
Dyson A Bryan NS Fernandez BO Garcia-Saura MF Saijo F Mongardon N Rodriguez J Singer M Feelisch M 《Free radical biology & medicine》2011,51(6):1137-1145
Most studies examining the metabolic fate of NO during systemic inflammation have focused on measuring the quantitatively predominating, stable anions nitrite and nitrate within the circulation. However, these are not necessarily the NO-related products that govern NO metabolism and signaling in tissues. We assessed all major NO derivatives temporally in blood and vital organs during inflammation and explored their relationship to insult severity and redox status. Male rats receiving intraperitoneal endotoxin or vehicle were sacrificed for organ and blood sampling between 0 and 24 h. Endotoxin induced transient and organ-specific changes in a variety of NO metabolites. Nitrite and nitrate increased, peaking at 8 and 12 h, respectively. S- and N-nitrosation and heme-nitrosylation products also peaked at 8 h; these posttranslational protein modifications were associated with decreased myocardial function (echocardiography). Evidence of oxidative stress and systemic inflammation was also obtained. The rise in most NO derivatives was proportional to insult severity. All metabolite levels normalized within 24 h, despite evidence of persisting myocardial dysfunction and clinical unwellness. Our findings point to a complex interplay between NO production, antioxidant defense, and redox status. Although the precise (patho)physiologic roles of specific NO derivatives and their diagnostic/prognostic utility await further investigation, nitroso species in erythrocytes are the most sensitive markers of NO in systemic inflammation, detectable before clinical symptoms manifest. 相似文献
107.
Protein sulfenic acid formation has long been regarded as unwanted damage caused by reactive oxygen species (ROS). However, over the past 10 years, accumulating evidence has shown that the reversible oxidation of cysteine thiol groups to sulfenic acid functions as a redox-based signal transduction mechanism. Here, we review the mechanisms of sulfenic acid formation by ROS. We present some of the most important roles played by sulfenic acids in living cells as well as the pathways that regulate sulfenic acid formation. We highlight the experimental tools that have been developed to study the cellular sulfenome and show how computational approaches might help to better understand the mechanisms of sulfenic acid formation. 相似文献
108.
P. PalsamyS. Subramanian 《生物化学与生物物理学报:疾病的分子基础》2011,1812(7):719-731
Hyperglycemia-mediated oxidative stress plays a crucial role in the progression of diabetic nephropathy. Hence, the present study was hypothesized to explore the renoprotective nature of resveratrol by assessing markers of oxidative stress, proinflammatory cytokines and antioxidant competence in streptozotocin-nicotinamide-induced diabetic rats. Oral administration of resveratrol to diabetic rats showed a significant normalization on the levels of creatinine clearance, plasma adiponectin, C-peptide and renal superoxide anion, hydroxyl radical, nitric oxide, TNF-α, IL-1β, IL-6 and NF-κB p65 subunit and activities of renal aspartate transaminase, alanine transaminase and alkaline phosphatase in comparison with diabetic rats. The altered activities of renal aldose reductase, sorbitol dehydrogenase and glyoxalase-I and elevated level of serum advanced glycation end products in diabetic rats were also reverted back to near normalcy. Further, resveratrol treatment revealed a significant improvement in superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities and vitamins C and E, and reduced glutathione levels, with a significant decline in lipid peroxides, hydroperoxides and protein carbonyls levels in diabetic kidneys. Similarly, mRNA and protein analyses substantiated that resveratrol treatment notably normalizes the renal expression of Nrf2/Keap1and its downstream regulatory proteins in the diabetic group of rats. Histological and ultrastructural observations also evidenced that resveratrol effectively protects the kidneys from hyperglycemia-mediated oxidative damage. These findings demonstrated the renoprotective nature of resveratrol by attenuating markers of oxidative stress in renal tissues of diabetic rats. 相似文献
109.
Letelier ME Lepe AM Faúndez M Salazar J Marín R Aracena P Speisky H 《Chemico-biological interactions》2005,151(2):71-82
It is generally accepted that copper toxicity is a consequence of the generation of reactive oxygen species (ROS) by copper ions via Fenton or Haber-Weiss reactions. Copper ions display high affinity for thiol and amino groups occurring in proteins. Thus, specialized proteins containing clusters of these groups transport and store copper ions, hampering their potential toxicity. This mechanism, however, may be overwhelmed under copper overloading conditions, in which copper ions may bind to thiol groups occurring in proteins non-related to copper metabolism. In this study, we propose that indiscriminate copper binding may lead to damaging consequences to protein structure, modifying their biological functions. Therefore, we treated liver subcellular membrane fractions, including microsomes, with Cu2+ ions either alone or in the presence of ascorbate (Cu2+/ascorbate); we then assayed both copper-binding to membranes, and microsomal cytochrome P450 oxidative system and GSH-transferase activities. All assayed sub-cellular membrane fractions treated with Cu2+ alone displayed Cu2+-binding, which was significantly increased in the presence of Zn2+, Hg2+, Cd2+, Ag+1 and As3+. Treatment of microsomes with Cu2+ in the μM range decreased the microsomal thiol content; in the presence of ascorbate, Cu2+ added in the nM concentrations range induced a significant microsomal lipoperoxidation; noteworthy, increasing Cu2+ concentration to ≥50 μM led to non-detectable lipoperoxidation levels. On the other hand, μM Cu2+ led to the inhibition of the enzymatic activities tested to the same extent in either presence or absence of ascorbate. We discuss the possible significance of indiscriminate copper binding to thiol proteins as a possible mechanism underlying copper-induced toxicity. 相似文献
110.
Cisplatin causes nephropathy accompanied by two types of cell death, necrosis and apoptosis, according to its dosage. The mechanisms of necrosis are still unclear. In this study, we examined how high doses of cisplatin induce cell injury and whether a high affinity sodium-dependent glucose transporter (SGLT1) has a cytoprotective function in renal epithelial LLC-PK1 cells. Cisplatin decreased in transepithelial electrical resistance (TER) and increased in the number of necrotic dead cells in a time dependent manner. Phloridzin, a potent SGLT1 inhibitor, enhanced both TER decrease and increase of necrotic dead cells caused by cisplatin. Cisplatin increased in the intracellular nitric oxide, superoxide anion and peroxynitrite productions. Phloridzin enhanced the peroxynitrite production caused by cisplatin. The intracellular diffusion of ZO-1 and TER decrease caused by cisplatin were inhibited by N-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor. Protein kinase C was not involved in the cisplatin-induced injury. 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrinato iron (III) and reduced glutathione, peroxynitrite scavengers, inhibited the cisplatin-induced ZO-1 diffusion, TER decrease, and increase of necrotic dead cells. These results suggest that peroxynitrite is a key mediator in the nephrotoxicity caused by high doses of cisplatin. SGLT1 endogenously carries out the cytoprotective function by the reduction of peroxynitrite production. 相似文献