首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1700篇
  免费   112篇
  国内免费   46篇
  1858篇
  2024年   2篇
  2023年   31篇
  2022年   38篇
  2021年   53篇
  2020年   39篇
  2019年   53篇
  2018年   68篇
  2017年   44篇
  2016年   39篇
  2015年   50篇
  2014年   102篇
  2013年   126篇
  2012年   80篇
  2011年   85篇
  2010年   94篇
  2009年   105篇
  2008年   129篇
  2007年   116篇
  2006年   112篇
  2005年   102篇
  2004年   80篇
  2003年   56篇
  2002年   63篇
  2001年   19篇
  2000年   22篇
  1999年   33篇
  1998年   20篇
  1997年   29篇
  1996年   15篇
  1995年   12篇
  1994年   16篇
  1993年   8篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1986年   1篇
排序方式: 共有1858条查询结果,搜索用时 0 毫秒
51.
Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS162) is reported. A combination of X-ray crystallography (crystal structure at 1.5 Å resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS162 as an example of bis-histidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS162 is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS162 is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS162 is a penta-coordinated species, where the proximal HisF8-Fe bond is severed.  相似文献   
52.
A wheat cDNA encoding a glycine-rich RNA-binding protein, whGRP-1, was isolated. WhGRP-1 contains two conserved domains, the RNA-binding motif (RNP motif) combined with a series of glycine-rich imperfect repeats, characteristic of a conserved family of plant RNA-binding proteins. Northern analysis revealed that whGRP-1 mRNA accumulates to high levels in roots and to lower levels in leaves of wheat seedlings. whGRP-1 mRNA accumulation is not enhanced by exogenous abscisic acid in seedlings and accumulates to very high levels during wheat embryo development, showing a pattern different from that of the ABA-inducible wheat Em gene.  相似文献   
53.
54.
Recent research findings clearly indicate that lysin motif (LysM)-containing cell surface receptors are involved in the recognition of specific oligosaccharide elicitors (chitin and peptidoglycan), which trigger an innate immunity response in plants. These receptors are either LysM-containing receptor-like kinases (LYKs) or LysM-containing receptor proteins (LYPs). In Arabidopsis, five LYKs (AtCERK1/AtLYK1 and AtLYK2–5) and three LYPs (AtLYP1–3) are likely expressed on the plasma membrane. In this review, we summarize recent research results on the role of these receptors in plant innate immunity, including the recent structural characterization of AtCERK1 and composition of the various receptor complexes in Arabidopsis.  相似文献   
55.
RNA regulators are critical for animal development, especially in the germ line where gene expression is often modulated by changes in mRNA stability, translation, and localization. In this paper, we focus on Caenorhabditis elegans LARP-1, a representative of one La-related protein (Larp) family found broadly among eukaryotes. LARP-1 possesses a signature La motif, which is an ancient RNA-binding domain, plus a second conserved motif, typical of LARP-1 homologs and therefore dubbed the LARP1 domain. LARP-1 appears to bind RNA in vitro via both the La motif and the LARP1 domain. larp-1 null mutants have an oogenesis defect reminiscent of hyperactive Ras-MAPK signaling; this defect is suppressed or enhanced by down- or up-regulating the Ras-MAPK pathway, respectively. Consistent with a role in down-regulating the Ras-MAPK pathway, larp-1 null mutants have higher than normal levels of selected pathway mRNAs and proteins. LARP-1 protein colocalizes with P bodies, which function in RNA degradation. We suggest that LARP-1 functions in P bodies to attenuate the abundance of conserved Ras-MAPK mRNAs. We also propose that the cluster of LARP-1 homologs may function generally to control the expression of key developmental regulators.  相似文献   
56.
Esterase G (EstG) from dibutyl phthalate (DBP)-degrading Sphingobium sp. SM42 was immobilized on amine-functionalized supports through aldehyde tag technology. Two different sulfatase motif tags, either LCTPSR (cysteine-type) or MSAPAR (serine-type), each of which is recognized by a specific formylglycine generating enzyme (FGE), were fused to the C-terminus of EstG. The cysteine-specific FGE was derived from Pseudomonas putida KT2440 while Klebsiella sp. SLS5 provided serine-specific FGE. The EstG with serine-type aldehyde tag showed a greater immobilization yield and higher specific activity by 4.8-fold and 1.8-fold, respectively. The immobilized EstG retained over 90% of its original activity after seven cycles of usage, and exhibited significantly improved thermostability by retaining 66% activity after 1 h incubation at 60 °C. Additionally, nearly 100% and over 30% of the DBP in 10 mM and 100 mM solutions, respectively, was degraded by the immobilized EstG within 18 h.  相似文献   
57.
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.  相似文献   
58.
We describe a 7-year-old boy with a complex rearrangement involving the whole short arm of chromosome 9 defined by means of molecular cytogenetic techniques. The rearrangement is characterized by a 18.3 Mb terminal deletion associated with the inverted duplication of the adjacent 21,5 Mb region. The patient shows developmental delay, psychomotor retardation, hypotonia. Other typical features of 9p deletion (genital disorders, midface hypoplasia, long philtrum) and of the 9p duplication (brachycephaly, down slanting palpebral fissures and bulbous nasal tip) are present. Interestingly, he does not show trigonocephaly that is the most prominent dysmorphism associated with the deletion of the short arm of chromosome 9. Patient's phenotype and the underlying flanking opposite 9p imbalances are compared with that of reported patients and the proposed critical regions for 9p deletion and 9p duplication syndromes.  相似文献   
59.
In this article, we present a de novo method for predicting protein domain boundaries, called OPUS-Dom. The core of the method is a novel coarse-grained folding method, VECFOLD, which constructs low-resolution structural models from a target sequence by folding a chain of vectors representing the predicted secondary-structure elements. OPUS-Dom generates a large ensemble of folded structure decoys by VECFOLD and labels the domain boundaries of each decoy by a domain parsing algorithm. Consensus domain boundaries are then derived from the statistical distribution of the putative boundaries and three empirical sequence-based domain profiles. OPUS-Dom generally outperformed several state-of-the-art domain prediction algorithms over various benchmark protein sets. Even though each VECFOLD-generated structure contains large errors, collectively these structures provide a more robust delineation of domain boundaries. The success of OPUS-Dom suggests that the arrangement of protein domains is more a consequence of limited coordination patterns per domain arising from tertiary packing of secondary-structure segments, rather than sequence-specific constraints.  相似文献   
60.
A family of calcium-dependent protein kinases (CDPKs) is a unique enzyme which plays crucial roles in intracellular calcium signaling in plants, algae, and protozoa. CDPKs of malaria parasites are known to be key regulators for stage-specific cellular responses to calcium, a widespread secondary messenger that controls the progression of the parasite. In our study, we identified a gene encoding Plasmodium vivax CDPK4 (PvCDPK4) and characterized its molecular property and cellular localization. PvCDPK4 was a typical CDPK which had well-conserved N-terminal kinase domain and C-terminal calmodulin-like structure with 4 EF hand motifs for calcium-binding. The recombinant protein of EF hand domain of PvCDPK4 was expressed in E. coli and a 34 kDa product was obtained. Immunofluorescence assay by confocal laser microscopy revealed that the protein was expressed at the mature schizont of P. vivax. The expression of PvCDPK4-EF in schizont suggests that it may participate in the proliferation or egress process in the life cycle of this parasite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号