首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   606篇
  免费   4篇
  国内免费   8篇
  2023年   3篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   16篇
  2018年   27篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   100篇
  2013年   67篇
  2012年   51篇
  2011年   69篇
  2010年   37篇
  2009年   50篇
  2008年   29篇
  2007年   32篇
  2006年   23篇
  2005年   33篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有618条查询结果,搜索用时 15 毫秒
571.
A major house dust mite allergen Der f 1 belongs to the papain-like cysteine protease family. This study investigated whether Der f 1 can cleave the latency-associated peptide (LAP) of transforming growth factor (TGF)-β via its proteolytic activity and activate latent TGF-β. We found that Der f 1 can cleave LAP and induce the activation of latent TGF-β, leading to functional Smad signaling. Importantly, these actions of Der f 1 were inhibited by cysteine protease inhibitor E64 or inactivation of the protease activity by heat. Thus, latent TGF-β may be a direct target of Der f 1 protease activity.  相似文献   
572.
eIF3f is a subunit of eukaryotic initiation factor 3 (eIF3). We previously showed that eIF3f is phosphorylated by cyclin dependent kinase 11 (CDK11p46) which is an important effector in apoptosis. Here, we identified a second eIF3f phosphorylation site (Thr119) by CDK11p46 during apoptosis. We demonstrated that eIF3f is directly phosphorylated by CDK11p46 in vivo. Phosphorylation of eIF3f plays an important role in regulating its function in translation and apoptosis. Phosphorylation of eIF3f enhances the association of eIF3f with the core eIF3 subunits during apoptosis. Our data suggested that eIF3f may inhibit translation by increasing the binding to the eIF3 complex during apoptosis.

Structured summary

MINT-6948874: EIF3b (uniprotkb:P55884) physically interacts (MI:0218) with EIF3f (uniprotkb:O00303) by anti bait coimmunoprecipitation (MI:0006)MINT-6948891: EIF3b (uniprotkb:P55884) physically interacts (MI:0218) with EIF3c (uniprotkb:Q99613), EIF3a (uniprotkb:Q14152) and EIF3f (uniprotkb:O00303) by anti bait coimmunoprecipitation (MI:0006)MINT-6948836, MINT-6948849, MINT-6948862: CDK11p46 (uniprotkb:P21127) phosphorylates (MI:0217) EIF3f (uniprotkb:O00303) by protein kinase assay (MI:0424)  相似文献   
573.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that displays several non-glycolytic activities, including the maintenance and/or protection of telomeres. In this study, we determined the molecular mechanism and biological role of the interaction between GAPDH and human telomeric DNA. Using gel-shift assays, we show that recombinant GAPDH binds directly with high affinity (Kd = 45 nM) to a single-stranded oligonucleotide comprising three telomeric DNA repeats, and that nucleotides T1, G5, and G6 of the TTAGGG repeat are essential for binding. The stoichiometry of the interaction is 2:1 (DNA:GAPDH), and GAPDH appears to form a high-molecular-weight complex when bound to the oligonucleotide. Mutation of Asp32 and Cys149, which are localized to the NAD-binding site and the active-site center of GAPDH, respectively, produced mutants that almost completely lost their telomere-binding functions both in vitro and in situ (in A549 human lung cancer cells). Treatment of A549 cells with the chemotherapeutic agents gemcitabine and doxorubicin resulted in increased nuclear localization of expressed wild-type GAPDH, where it protected telomeres against rapid degradation, concomitant with increased resistance to the growth-inhibitory effects of these drugs. The non-DNA-binding mutants of GAPDH also localized to the nucleus when expressed in A549 cells, but did not confer any significant protection of telomeres against chemotherapy-induced degradation or growth inhibition; this occurred without the involvement of caspase activation or apoptosis regulation. Overall, these data demonstrate that GAPDH binds telomeric DNA directly in vitro and may have a biological role in the protection of telomeres against rapid degradation in response to chemotherapeutic agents in A549 human lung cancer cells.  相似文献   
574.
Phylogenetic relationships and species boundaries of Australian burrowing freshwater crayfish belonging to the genera Engaeus, Engaewa, Geocharax, Gramastacus and Tenuibranchiurus are investigated using combined mitochondrial and nuclear DNA sequence data and Bayesian and Maximum Parsimony methods. Phylogenies are statistically compared to previously published hypotheses. Engaeus, Engaewa, Geocharax, Gramastacus and Tenuibranchiurus form a strongly supported monophyletic clade. This grouping is independently supported by morphology but unites geographically highly disjunct lineages. Our data show two cryptic species in Geocharax, one cryptic species in Gramastacus and two cryptic species within the highly divergent Engaeus lyelli lineage. Using a Bayesian relaxed molecular clock method, the 16S rDNA data show generic-level diversification coinciding with the transition from a wet to arid palaeoclimate near the mid Miocene.  相似文献   
575.
576.
Keratin 8 and 18 are simple epithelial intermediate filament (IF) proteins, whose expression is differentiation- and tissue-specific, and is maintained during tumorigenesis. Vimentin IF is often co-expressed with keratins in cancer cells. Recently, IF have been proposed to be involved in signaling pathways regulating cell growth, death and motility. The PI3K/Akt pathway plays a pivotal role in these processes. Thus, we investigated the role of Akt (1 and 2) in regulating IF expression in different epithelial cancer cell lines. Over-expression of Akt1 increases K8/18 proteins. Akt2 up-regulates K18 and vimentin expression by an increased mRNA stability. To our knowledge, these results represent the first indication that Akt isoforms regulate IF expression and support the hypothesis that IFs are involved in PI3K/Akt pathway.  相似文献   
577.
Breast epithelial stem cells are thought to be the primary targets in the etiology of breast cancer. Since breast cancers mostly express estrogen and progesterone receptor (ERalpha and PR), we examined the biology of these ERalpha/PR-positive cells and their relationship to stem cells in normal human breast epithelium. We employed several complementary approaches to identify putative stem cell markers, to characterise an isolated stem cell population and to relate these to cells expressing the steroid receptors ERalpha and PR. Using DNA radiolabelling in human tissue implanted into athymic nude mice, a population of label-retaining cells were shown to be enriched for the putative stem cell markers p21(CIP1) and Msi-1, the human homolog of Drosophila Musashi. Steroid receptor-positive cells were found to co-express these stem cell markers together with cytokeratin 19, another putative stem cell marker in the breast. Human breast epithelial cells with Hoechst dye-effluxing "side population" (SP) properties characteristic of mammary stem cells in mice were demonstrated to be undifferentiated "intermediate" cells by lack of expression of myoepithelial and luminal apical membrane markers. These SP cells were 6-fold enriched for ERalpha-positive cells and expressed several fold higher levels of the ERalpha, p21(CIP1) and Msi1 genes than non-SP cells. In contrast to non-SP cells, SP cells formed branching structures in matrigel which included cells of both luminal and myoepithelial lineages. The data suggest a model where scattered steroid receptor-positive cells are stem cells that self-renew through asymmetric cell division and generate patches of transit amplifying and differentiated cells.  相似文献   
578.
应用糖基化蛋白亲和层析技术对兔肌及人红细胞的3-磷酸甘油醛脱氢酶的分离分析表明,兔肌非糖基化GAPDH的比活为180—200单位,而糖基化gGAPDH的为40—50单位,并占该酶蛋白总量的40%。人类红细胞糖基化gGAPDH的活力占其总活力的55%左右。以上结果表明:哺乳动物体内存在糖基化3-磷酸甘油醛脱氢酶。由于(1)糖基化明显影响GAPDH的活力;(2)糖基化酶活性部位的巯基(Cys-149)空间位置发生了改变;(3)糖基化影响活性部位的空间构象及(4)OPT对糖基化及非糖基化酶的修饰无论在动力学上还是在KI淬灭时都有明显差异,因此,糖基化的位点可能与赖氨酸残基有关,并且接近或位于酶的活性部位。  相似文献   
579.
Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1β and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1β cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3?/? Casp8?/? macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.  相似文献   
580.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors primarily involved in lipid homeostasis. PPARδ displays strong expression in tissues with high lipid metabolism, such as adipose, intestine and muscle. Its role in skeletal muscle remains largely unknown. After a 24-h starvation period, PPARδ mRNA levels are dramatically up-regulated in gastrocnemius muscle of mice and restored to control level upon refeeding. The rise of PPARδ is accompanied by parallel up-regulations of fatty acid translocase/CD36 (FAT/CD36) and heart fatty acid binding protein (H-FABP), while refeeding promotes down-regulation of both genes. To directly access the role of PPARδ in muscle cells, we forced its expression and that of a dominant-negative PPARδ mutant in C2C12 myogenic cells. Differentiated C2C12 cells responds to 2-bromopalmitate or synthetic PPARδ agonist by induction of genes involved in lipid metabolism and increment of fatty acid oxidation. Overexpression of PPARδ enhanced these cellular responses, whereas expression of the dominant-negative mutant exerts opposite effects. These data strongly support a role for PPARδ in the regulation of fatty acid oxidation in skeletal muscle and in adaptive response of this tissue to lipid catabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号