首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21600篇
  免费   947篇
  国内免费   681篇
  23228篇
  2024年   15篇
  2023年   250篇
  2022年   408篇
  2021年   521篇
  2020年   489篇
  2019年   715篇
  2018年   736篇
  2017年   393篇
  2016年   521篇
  2015年   655篇
  2014年   1336篇
  2013年   1556篇
  2012年   858篇
  2011年   1338篇
  2010年   945篇
  2009年   1031篇
  2008年   1201篇
  2007年   1195篇
  2006年   1099篇
  2005年   965篇
  2004年   871篇
  2003年   730篇
  2002年   707篇
  2001年   442篇
  2000年   400篇
  1999年   402篇
  1998年   433篇
  1997年   360篇
  1996年   310篇
  1995年   316篇
  1994年   288篇
  1993年   224篇
  1992年   189篇
  1991年   166篇
  1990年   143篇
  1989年   124篇
  1988年   110篇
  1987年   107篇
  1986年   82篇
  1985年   85篇
  1984年   110篇
  1983年   98篇
  1982年   86篇
  1981年   67篇
  1980年   62篇
  1979年   41篇
  1978年   19篇
  1977年   13篇
  1976年   5篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
Rapid transferrin efflux from brain to blood across the blood-brain barrier   总被引:4,自引:0,他引:4  
The brain efflux index method is used to examine the extent to which transferrin effluxes from brain to blood across the blood-brain barrier (BBB) following intracerebral injection. Whereas high-molecular-weight dextran is nearly 100% retained in brain for up to 90 min after intracerebral injection in the Par2 region of the parietal cortex of brain, there is rapid efflux of transferrin from brain to blood across the BBB. The efflux of apotransferrin is 3.5-fold faster than the efflux of holo-transferrin. The brain to blood efflux of apotransferrin is completely saturable by unlabeled transferrin, but is not inhibited by other plasma proteins. These studies provide evidence for reverse transcytosis of transferrin from brain to blood across the BBB. As circulating transferrin is known to undergo transcytosis across the BBB in the blood-to-brain direction, these studies support the model of bidirectional transcytosis of transferrin through the BBB in vivo.  相似文献   
993.
Neurotransmitter receptors in vivo are linked to intracellular adaptor proteins and signalling molecules driving downstream pathways. Methods for physical isolation are essential to answer fundamental questions about the size, structure and composition of in vivo complexes and complement the widely used yeast 2-hybrid method. The N-methyl-D-aspartate receptor (NMDAR) binds postsynaptic density 95 (PSD-95) protein; both are required for synaptic plasticity and learning and participate in other important pathophysiological functions. Here we describe the development and optimization of novel methods for large-scale isolation of NMDAR--PSD-95 complexes from mouse brain including immunoaffinity, immunoprecipitation, ligand-affinity and immobilized PSD-95 binding peptides. Short PDZ binding peptides modelled on NMDAR subunits were shown to isolate NMDAR complexes. Gel filtration indicated the native NMDAR--PSD-95 complexes were 2000 kDa, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed a complexity suggesting a huge network of both structural components and signalling enzymes. These methods can be used to define the structure of the complexes at different synapses and in mice carrying gene mutations as well as new tools for drug discovery.  相似文献   
994.
Phosphorylation of the NMDA receptor by Src-family tyrosine kinases has been implicated in the regulation of receptor function. We have investigated the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B by exogenous Src and Fyn and compared this to phosphorylation by tyrosine kinases associated with the postsynaptic density (PSD). Phosphorylation of the receptor by exogenous Src and Fyn was dependent upon initial binding of the kinases to PSDs via their SH2-domains. Src and Fyn phosphorylated similar sites in NR2A and NR2B, tryptic peptide mapping identifying seven and five major tyrosine-phosphorylated peptides derived from NR2A and NR2B, respectively. All five tyrosine phosphorylation sites on NR2B were localized to the C-terminal, cytoplasmic domain. Phosphorylation of NR2B by endogenous PSD tyrosine kinases yielded only three tyrosine-phosphorylated tryptic peptides, two of which corresponded to Src phosphorylation sites, and one of which was novel. Phosphorylation-site specific antibodies identified NR2B Tyr1472 as a phosphorylation site for intrinsic PSD tyrosine kinases. Phosphorylation of this site was inhibited by the Src-family-specific inhibitor PP2. The results identify several potential phosphorylation sites for Src in the NMDA receptor, and indicate that not all of these sites are available for phosphorylation by kinases located within the structural framework of the PSD.  相似文献   
995.
L-655,708 is a ligand for the benzodiazepine site of the gamma-aminobutyric acid type A (GABA(A)) receptor that exhibits a 100-fold higher affinity for alpha5-containing receptors compared with alpha1-containing receptors. Molecular biology approaches have been used to determine which residues in the alpha5 subunit are responsible for this selectivity. Two amino acids have been identified, alpha5Thr208 and alpha5Ile215, each of which individually confer approximately 10-fold binding selectivity for the ligand and which together account for the 100-fold higher affinity of this ligand at alpha5-containing receptors. L-655,708 is a partial inverse agonist at the GABA(A) receptor which exhibited no functional selectivity between alpha1- and alpha5-containing receptors and showed no change in efficacy at receptors containing alpha1 subunits where amino acids at both of the sites had been altered to their alpha5 counterparts (alpha1Ser205-Thr,Val212-Ile). In addition to determining the binding selectivity of L-655,708, these amino acid residues also influence the binding affinities of a number of other benzodiazepine (BZ) site ligands. They are thus important elements of the BZ site of the GABA(A) receptor, and further delineate a region just N-terminal to the first transmembrane domain of the receptor alpha subunit that contributes to this binding site.  相似文献   
996.
The trisomy 16 (Ts16) mouse is an animal model for human trisomy 21 (Down's syndrome). The gene encoding the NR2A subunit of the NMDA receptor has been localized to mouse chromosome 16. In the present study, western blot analysis revealed a 2.5-fold increase of NR2A expression in cultured Ts16 embryonic hippocampal neurons. However, this increase did not affect the properties of NMDA-evoked currents in response to various modulators. The sensitivity of NMDA receptors to transient applications of NMDA, spermine, and Zn(2+) was investigated in murine Ts16 and control diploid cultured embryonic hippocampal neurons. Peak and steady-state currents evoked by NMDA were potentiated by spermine at concentrations < 1 mM, and inhibited by Zn(2+) in a dose-dependent and voltage-independent manner. No marked difference was observed between Ts16 and control diploid neurons for any of these modulators with regard to IC(50) and EC(50) values or voltage dependency. Additionally, inhibition by the NR2B selective inhibitor, ifenprodil, was similar. These results demonstrate that NMDA-evoked currents are not altered in cultured embryonic Ts16 neurons and suggest that Ts16 neurons contain similar functional properties of NMDA receptors as diploid control neurons despite an increased level of NR2A expression.  相似文献   
997.
Light stimulates dopamine release in the retina and has been shown to rapidly up-regulate rod opsin mRNA. In the present study, we tested the effect of dopamine on rod opsin mRNA expression and examined the hypothesis that dopamine can mediate a light-evoked increase in opsin gene expression. Northern blots showed that a 30-min light-exposure increased rod opsin mRNA expression 27%. In situ hybridization on isolated rods showed that 500 nM dopamine and 1 microM quinpirole (dopamine D2/D3/D4 agonist) increased opsin mRNA 45% and 26%, respectively. The effect of quinpirole was selectively blocked by the D4 antagonist, L750,667 (20 microM). In very low density cultures, quinpirole increased opsin expression 46%, suggesting a direct effect on rod photoreceptors. Consistent with a dopamine D4 receptor mechanism, 1 microM H-89 (protein kinase A inhibitor) increased opsin mRNA 39%. Finally, intravitreal injection of quinpirole increased opsin mRNA 21% whereas injection of L750,667 (10 microM) blocked the light-evoked increase in opsin expression. These data show that rod opsin mRNA is up-regulated by dopamine binding a D4-like receptor on rods, possibly through inhibition of protein kinase A, and that endogenous dopamine can mediate the light-evoked increase in opsin mRNA expression.  相似文献   
998.
999.
Examination of the pharmacophoric points of the pyrazolo[1,5-a]pyrimidine derivatives, ligands for BZR, previously published led us to the design of a novel class of 3,6-diaryl-4,7-dihydro-pyrazolo[1,5-a]pyrimidin-7-ones and to determine the groups involved in the BZR recognition.  相似文献   
1000.
The present study was aimed at evaluating of the effects of dopamine (DA) toxicity on PC12 cells' calcium homeostasis, cellular viability, and free radical levels. Moreover, the effect of receptor inhibition, and DA metabolism and reuptake antagonism on all parameters was also evaluated. Acute treatment with DA impaired the ability of PC12 cells to buffer excess calcium after K+-depolarization, decreased cellular viability by approximately 35%, and increased free radical levels by about 10% in a dose dependent manner. Pretreatment with both active and inactive pargyl monoamine oxidase inhibitors (MAOi) protected PC12 cells from DA toxicity on cellular viability and free radical levels, regardless of the presence or absence of their target enzymes in PC12 cells. These results suggest a lack of specific involvement of DA metabolism by MAO in dopamine's effects on cellular viability and production of free radicals. However, DA-induced dysregulation of calcium homeostasis seems to be more specifically mediated by DA metabolism by MAO. Results indicate that, in order for toxicity to occur the DA must be taken up into the cells. DA receptors do not mediate dopamine cytoxicity, and the D2 receptor plays a modest role in DA-induced calcium dysregulation and generation of free radicals. Moreover, DA-induced cell viability loss is not mediated by calcium, nor by caspase-3 enzyme, but is prevented by inhibition of mitochondrial permeability transition pores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号