首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16818篇
  免费   944篇
  国内免费   633篇
  18395篇
  2023年   190篇
  2022年   318篇
  2021年   382篇
  2020年   334篇
  2019年   441篇
  2018年   533篇
  2017年   341篇
  2016年   355篇
  2015年   462篇
  2014年   1046篇
  2013年   1182篇
  2012年   786篇
  2011年   1037篇
  2010年   950篇
  2009年   964篇
  2008年   1028篇
  2007年   1020篇
  2006年   904篇
  2005年   828篇
  2004年   694篇
  2003年   625篇
  2002年   538篇
  2001年   305篇
  2000年   283篇
  1999年   291篇
  1998年   298篇
  1997年   243篇
  1996年   204篇
  1995年   209篇
  1994年   163篇
  1993年   141篇
  1992年   128篇
  1991年   88篇
  1990年   79篇
  1989年   58篇
  1988年   69篇
  1987年   42篇
  1986年   32篇
  1985年   62篇
  1984年   153篇
  1983年   78篇
  1982年   86篇
  1981年   81篇
  1980年   63篇
  1979年   67篇
  1978年   42篇
  1977年   47篇
  1976年   30篇
  1975年   26篇
  1974年   31篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
61.
With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed.  相似文献   
62.
Methylation and partial acid hydrolysis of xylans from the bast and core of kenaf (Hibiscus cannabinus) showed that the main chain of these xylans consists of (1 → 4)-linked β-d-xylopyranosyl (Xylp) residues, some of which carry a -1,2-linked 4-O-methyl-glucopyranosyluronic acid (Me-GlcAp) and glucopyranosyluronic acid (GlcAp) residues as side chains. Partial hydrolysis of kenaf xylans afforded two series of aldouronic acids from aldobio- to aldotetraouronic acids. The acids of the first series composed of 4-O-Me-d-GlcAp and d-Xylp residues: 4-O-Me-GlcA-Xyl3, 4-O-Me-GlcA-Xyl2 and 4-O-Me-GlcA-Xyl. The second series composed of d-GlcAp and d-Xylp: GlcA-Xyl3, GlcA-Xyl2 and GlcA-Xyl.

In addition to these acids, another aldobiouronic acid, 4-O-(-d-GalAp)-d-Xyl was found to be present in the partial hydrolysate.

The molar ratio of GalA, GlcA, 4-O-Me-GlcA, and Xyl residues was calculated to be 1.0:2.0:9.4:119 for the bast xylan and 1.0:1.3:7.9:99.4 for the core xylan.  相似文献   

63.
Isopeptidases are essential regulators of protein ubiquitination and sumoylation. However, only two families of SUMO isopeptidases are at present known. Here, we report an activity‐based search with the suicide inhibitor haemagglutinin (HA)‐SUMO‐vinylmethylester that led to the identification of a surprising new SUMO protease, ubiquitin‐specific protease‐like 1 (USPL1). Indeed, USPL1 neither binds nor cleaves ubiquitin, but is a potent SUMO isopeptidase both in vitro and in cells. C13orf22l—an essential but distant zebrafish homologue of USPL1—also acts on SUMO, indicating functional conservation. We have identified invariant USPL1 residues required for SUMO binding and cleavage. USPL1 is a low‐abundance protein that colocalizes with coilin in Cajal bodies. Its depletion does not affect global sumoylation, but causes striking coilin mislocalization and impairs cell proliferation, functions that are not dependent on USPL1 catalytic activity. Thus, USPL1 represents a third type of SUMO protease, with essential functions in Cajal body biology.  相似文献   
64.
65.
RCK (regulating conductance of K+) domains are common regulatory domains that control the activity of eukaryotic and prokaryotic K+ channels and transporters. In bacteria these domains play roles in osmoregulation, regulation of turgor and membrane potential and in pH homeostasis. Whole-genome sequencing unveiled RCK gene redundancy, however the biological role of this redundancy is not well understood. In Bacillus subtilis, there are two closely related RCK domain proteins (KtrA and KtrC) that regulate the activity of the Ktr cation channels. KtrA has been well characterized but little is known about KtrC. We have characterized the structural and biochemical proprieties of KtrC and conclude that KtrC binds ATP and ADP, just like KtrA. However, in solution KtrC exist in a dynamic equilibrium between octamers and non-octameric species that is dependent on the bound ligand, with ATP destabilizing the octameric ring relative to ADP. Accordingly, KtrC-ADP crystal structures reveal closed octameric rings similar to those in KtrA, while KtrC-ATP adopts an open assembly with RCK domains forming a super-helix. In addition, both KtrC-ATP and -ADP octamers are stabilized by the signaling molecule cyclic-di-AMP, which binds to KtrC with high affinity. In contrast, c-di-AMP binds with 100-fold lower affinity to KtrA. Despite these differences we show with an E. coli complementation assay that KtrC and KtrA are interchangeable and able to form functional transporters with both KtrB and KtrD. The distinctive properties of KtrC, in particular ligand-dependent assembly/disassembly, suggest that this protein has a specific physiological role that is distinct from KtrA.  相似文献   
66.
A gene trap approach to identify genes that control development   总被引:3,自引:0,他引:3  
One methodology called gene trap represents a versatile strategy by which murine genes that control developmental events can be captured and identified with corresponding mutants produced at the same time. Gene trap methodology has been developed and several genes and their mutants have been analyzed, but almost all of the genes reported are those already known or murine homologs of other species. In this study, the efficiency of the gene trap methodology was improved and a novel mutant mouse strain named jumonji established which displayed an intriguing defect. Homozygous fetal mice died in utero and a significant proportion of the homozygotes showed abnormal groove formation on the neural plate and a defect in neural tube closure with a mixed genetic background of 129/Ola and BALB/c. The trapped gene believed to be responsible for these phenotypes encodes a novel nuclear protein. The results reveal that the gene trap approach can identify unknown interesting genes in murine development. The gene trap strategy, however, has several problems, the greatest of which is the difficulty in prescreening embryonic stem (ES) cells for interesting trapped genes. Recent studies are solving this problem and show that the prescreening of ES cells for genes with several characteristics is possible.  相似文献   
67.
Cholesterol and phospholipids are essential to the body, but an excess of cholesterol or lipids is toxic and a risk factor for arteriosclerosis. ABCG1, one of the half-type ABC proteins, is thought to be involved in cholesterol homeostasis. To explore the role of ABCG1 in cholesterol homeostasis, we examined its subcellular localization and function. ABCG1 and ABCG1-K120M, a WalkerA lysine mutant, were localized to the plasma membrane in HEK293 cells stably expressing ABCG1 and formed a homodimer. A stable transformant expressing ABCG1 exhibited efflux of cholesterol and choline phospholipids in the presence of BSA, and the cholesterol efflux was enhanced by the presence of HDL, whereas cells expressing ABCG1-K120M did not, suggesting that ATP binding and/or hydrolysis is required for the efflux. Mass and TLC analyses revealed that ABCG1 and ABCA1 secrete several species of sphingomyelin (SM) and phosphatidylcholine (PC), and SMs were preferentially secreted by ABCG1, whereas PCs were preferentially secreted by ABCA1. These results suggest that ABCA1 and ABCG1 mediate the lipid efflux in different mechanisms, in which different species of phospholipids are secreted, and function coordinately in the removal of cholesterol and phospholipids from peripheral cells.  相似文献   
68.
69.
Intracellular antibody fragments that interfere with molecular interactions inside cells are valuable in investigation of interactomes and in therapeutics, but their application demands that they function in the reducing cellular milieu. We show here a 2.7-Å crystal structure of intracellular antibody folds based on scaffolds developed from intracellular antibody capture technology, and we reveal that there is no structural or functional difference with or without the intra-domain disulfide bond of the variable domain of heavy chain or the variable domain of light chain. The data indicate that, in the reducing in vivo environment, the absence of the intra-domain disulfide bond is not an impediment to correction of antibody folding or to interaction with antigen. Thus, the structural constraints for in-cell function are intrinsic to variable single-domain framework sequences, providing a generic scaffold for isolation of functional intracellular antibody single domains.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号