首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25592篇
  免费   585篇
  国内免费   462篇
  26639篇
  2023年   122篇
  2022年   270篇
  2021年   291篇
  2020年   256篇
  2019年   336篇
  2018年   418篇
  2017年   263篇
  2016年   321篇
  2015年   767篇
  2014年   2096篇
  2013年   2051篇
  2012年   2097篇
  2011年   2655篇
  2010年   2265篇
  2009年   1113篇
  2008年   1180篇
  2007年   1074篇
  2006年   919篇
  2005年   790篇
  2004年   733篇
  2003年   709篇
  2002年   458篇
  2001年   242篇
  2000年   286篇
  1999年   346篇
  1998年   365篇
  1997年   349篇
  1996年   304篇
  1995年   341篇
  1994年   314篇
  1993年   258篇
  1992年   237篇
  1991年   215篇
  1990年   175篇
  1989年   176篇
  1988年   151篇
  1987年   129篇
  1986年   101篇
  1985年   165篇
  1984年   244篇
  1983年   191篇
  1982年   207篇
  1981年   129篇
  1980年   156篇
  1979年   118篇
  1978年   61篇
  1977年   54篇
  1976年   39篇
  1975年   23篇
  1974年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.

Background

Mucolipidosis type III gamma (MLIII gamma) is an autosomal recessive disease caused by a mutation in the GNPTG gene, which encodes the γ subunit of the N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase). This protein plays a key role in the transport of lysosomal hydrolases to the lysosome.

Methods

Three Chinese children with typical skeletal abnormalities of MLIII were identified, who were from unrelated consanguineous families. After obtaining informed consent, genomic DNA was isolated from the patients and their parents. Direct sequencing of the GNPTG and GNPTAB genes was performed using standard PCR reactions.

Results

The three probands showed clinical features typical of MLIII gamma, such as joint stiffness and vertebral scoliosis without coarsened facial features. Mutation analysis of the GNPTG gene showed that three novel mutations were identified, two in exon seven [c.425G>A (p.Cys142Val)] and [c.515dupC (p.His172Profs27X)], and one in exon eight [c.609+1G>C]. Their parents were determined to be heterozygous carriers when compared to the reference sequence in GenBank on NCBI.

Conclusions

Mutation of the GNPTG gene is the cause of MLIII gamma in our patients. Our findings expand the mutation spectrum of the GNPTG gene and extend the knowledge of the phenotype–genotype correlation of the disease.  相似文献   
993.
M-type potassium channels, encoded by the KCNQ family genes (KCNQ2–5), require calmodulin as an essential co-factor. Calmodulin bound to the KCNQ2 subunit regulates channel trafficking and stabilizes channel activity. We demonstrate that phosphorylation of calmodulin by protein kinase CK2 (casein kinase 2) rapidly and reversibly modulated KCNQ2 current. CK2-mediated phosphorylation of calmodulin strengthened its binding to KCNQ2 channel, caused resistance to phosphatidylinositol 4,5-bisphosphate depletion, and increased KCNQ2 current amplitude. Accordingly, application of CK2-selective inhibitors suppressed KCNQ2 current. This suppression was prevented by co-expression of CK2 phosphomimetic calmodulin mutants or pretreatment with a protein phosphatase inhibitor, calyculin A. We also demonstrated that functional CK2 and protein phosphatase 1 (PP1) were selectively tethered to the KCNQ2 subunit. We identified a functional KVXF consensus site for PP1 binding in the N-terminal tail of KCNQ2 subunit: mutation of this site augmented current density. CK2 inhibitor treatment suppressed M-current in rat superior cervical ganglion neurons, an effect negated by overexpression of phosphomimetic calmodulin or pretreatment with calyculin A Furthermore, CK2 inhibition diminished the medium after hyperpolarization by suppressing the M-current. These findings suggest that CK2-mediated phosphorylation of calmodulin regulates the M-current, which is tonically regulated by CK2 and PP1 anchored to the KCNQ2 channel complex.  相似文献   
994.
Quality control (QC) in the endoplasmic reticulum (ER) scrutinizes newly synthesized proteins and directs them either to ER export or ER-associated degradation (ERAD). Here, we demonstrate that the human δ-opioid receptor (hδOR) is subjected to ERQC in both N-glycan-dependent and -independent manners. This was shown by investigating the biosynthesis and trafficking of wild-type and non-N-glycosylated F27C variants in metabolic pulse-chase assays coupled with flow cytometry and cell surface biotinylation. Both QC mechanisms distinguished the minute one-amino acid difference between the variants, targeting a large fraction of hδOR-Cys27 to ERAD. However, the N-glycan-independent QC was unable to compensate the N-glycan-dependent pathway, and some incompletely folded non-N-glycosylated hδOR-Cys27 reached the cell surface in conformation incompatible with ligand binding. The turnover of receptors associating with the molecular chaperone calnexin (CNX) was significantly slower for the hδOR-Cys27, pointing to an important role of CNX in the hδOR N-glycan-dependent QC. This was further supported by the fact that inhibiting the co-translational interaction of hδOR-Cys27 precursors with CNX led to their ERAD. Opioid receptor pharmacological chaperones released the CNX-bound receptors to ER export and, furthermore, were able to rescue the Cys27 variant from polyubiquitination and retrotranslocation to the cytosol whether carrying N-glycans or not. Taken together, the hδOR appears to rely primarily on the CNX-mediated N-glycan-dependent QC that has the capacity to assist in folding, whereas the N-glycan-independent mechanism constitutes an alternative, although less accurate, system for directing misfolded/incompletely folded receptors to ERAD, possibly in altered cellular conditions.  相似文献   
995.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
996.
To develop potent and selective nNOS inhibitors, a new series of double-headed molecules with chiral linkers that derive from natural amino acid derivatives have been designed and synthesized. The new structures integrate a thiophenecarboximidamide head with two types of chiral linkers, presenting easy synthesis and good inhibitory properties. Inhibitor (S)-9b exhibits a potency of 14.7 nM against nNOS and is 1134 and 322-fold more selective for nNOS over eNOS and iNOS, respectively. Crystal structures show that the additional binding between the aminomethyl moiety of 9b and propionate A on the heme and tetrahydrobiopterin (H4B) in nNOS, but not eNOS, contributes to its high selectivity. This work demonstrates the advantage of integrating known structures into structure optimization, and it should be possible to more readily develop compounds that incorporate bioavailability with these advanced features. Moreover, this integrative strategy is a general approach in new drug discovery.  相似文献   
997.
Conformation-based disorders are manifested at the level of protein structure, necessitating an accurate understanding of how misfolded proteins are processed by the cellular proteostasis network. Asparagine-linked glycosylation plays important roles for protein quality control within the secretory pathway. The suspected role for the MAN1B1 gene product MAN1B1, also known as ER mannosidase I, is to function within the ER similar to the yeast ortholog Mns1p, which removes a terminal mannose unit to initiate a glycan-based ER-associated degradation (ERAD) signal. However, we recently discovered that MAN1B1 localizes to the Golgi complex in human cells and uncovered its participation in ERAD substrate retention, retrieval to the ER, and subsequent degradation from this organelle. The objective of the current study was to further characterize the contribution of MAN1B1 as part of a Golgi-based quality control network. Multiple lines of experimental evidence support a model in which neither the mannosidase activity nor catalytic domain is essential for the retention or degradation of the misfolded ERAD substrate Null Hong Kong. Instead, a highly conserved, vertebrate-specific non-enzymatic decapeptide sequence in the luminal stem domain plays a significant role in controlling the fate of overexpressed Null Hong Kong. Together, these findings define a new functional paradigm in which Golgi-localized MAN1B1 can play a mannosidase-independent gatekeeper role in the proteostasis network of higher eukaryotes.  相似文献   
998.
FFAR1/GPR40 is a seven-transmembrane domain receptor (7TMR) expressed in pancreatic β cells and activated by FFAs. Pharmacological activation of GPR40 is a strategy under consideration to increase insulin secretion in type 2 diabetes. GPR40 is known to signal predominantly via the heterotrimeric G proteins Gq/11. However, 7TMRs can also activate functionally distinct G protein-independent signaling via β-arrestins. Further, G protein- and β-arrestin-based signaling can be differentially modulated by different ligands, thus eliciting ligand-specific responses (“biased agonism”). Whether GPR40 engages β-arrestin-dependent mechanisms and is subject to biased agonism is unknown. Using bioluminescence resonance energy transfer-based biosensors for real-time monitoring of cell signaling in living cells, we detected a ligand-induced GPR40-β-arrestin interaction, with the synthetic GPR40 agonist TAK-875 being more effective than palmitate or oleate in recruiting β-arrestins 1 and 2. Conversely, TAK-875 acted as a partial agonist of Gq/11-dependent GPR40 signaling relative to both FFAs. Pharmacological blockade of Gq activity decreased FFA-induced insulin secretion. In contrast, knockdown or genetic ablation of β-arrestin 2 in an insulin-secreting cell line and mouse pancreatic islets, respectively, uniquely attenuated the insulinotropic activity of TAK-875, thus providing functional validation of the biosensor data. Collectively, these data reveal that in addition to coupling to Gq/11, GPR40 is functionally linked to a β-arrestin 2-mediated insulinotropic signaling axis. These observations expose previously unrecognized complexity for GPR40 signal transduction and may guide the development of biased agonists showing improved clinical profile in type 2 diabetes.  相似文献   
999.
1000.
GPx8 is a mammalian Cys-glutathione peroxidase of the endoplasmic reticulum membrane, involved in protein folding. Its regulation is mostly unknown. We addressed both the functionality of two hypoxia-response elements (HREs) within the promoter, GPx8 HRE1 and GPx8 HRE2, and the GPx8 physiological role. In HeLa cells, treatment with HIFα stabilizers, such as diethyl succinate (DES) or 2-2′-bipyridyl (BP), induces GPx8 expression at both mRNA and protein level. Luciferase activity of pGL3GPx8wt, containing a fragment of the GPx8 promoter including the two HREs, is also induced by DES/BP or by overexpressing either individual HIFα subunit. Mutating GPx8 HRE1 within pGL3GPx8wt resulted in a significantly higher inhibition of luciferase activity than mutating GPx8 HRE2. Electrophoretic mobility-shift assay showed that both HREs exhibit enhanced binding to a nuclear extract from DES/BP-treated cells, with stronger binding by GPx8 HRE1. In DES-treated cells transfected with pGL3GPx8wt or mutants thereof, silencing of HIF2α, but not HIF1α, abolishes luciferase activity. Thus GPx8 is a novel HIF target preferentially responding to HIF2α binding at its two novel functional GPx8 HREs, with GPx8 HRE1 playing the major role. Fibroblast growth factor (FGF) treatment increases GPx8 mRNA expression, and reporter gene experiments indicate that induction occurs via HIF. Comparing the effects of depleting GPx8 on the downstream effectors of FGF or insulin signaling revealed that absence of GPx8 results in a 16- or 12-fold increase in phosphorylated ERK1/2 by FGF or insulin treatment, respectively. Furthermore, in GPx8-depleted cells, phosphorylation of AKT by insulin treatment increases 2.5-fold. We suggest that induction of GPx8 expression by HIF slows down proliferative signaling during hypoxia and/or growth stimulation through receptor tyrosine kinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号