首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57655篇
  免费   17760篇
  国内免费   698篇
  2023年   164篇
  2022年   279篇
  2021年   763篇
  2020年   3071篇
  2019年   4659篇
  2018年   4939篇
  2017年   4806篇
  2016年   4579篇
  2015年   4555篇
  2014年   4878篇
  2013年   5482篇
  2012年   4517篇
  2011年   4831篇
  2010年   4146篇
  2009年   2939篇
  2008年   3219篇
  2007年   2639篇
  2006年   2514篇
  2005年   2165篇
  2004年   1807篇
  2003年   1836篇
  2002年   1574篇
  2001年   1143篇
  2000年   687篇
  1999年   549篇
  1998年   296篇
  1997年   277篇
  1996年   198篇
  1995年   195篇
  1994年   190篇
  1993年   180篇
  1992年   153篇
  1991年   134篇
  1990年   120篇
  1989年   104篇
  1988年   82篇
  1987年   74篇
  1986年   84篇
  1985年   122篇
  1984年   199篇
  1983年   136篇
  1982年   149篇
  1981年   128篇
  1980年   124篇
  1979年   108篇
  1978年   68篇
  1977年   56篇
  1976年   49篇
  1975年   44篇
  1974年   50篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   
952.
Invasive vertebrates are frequently reported to have catastrophic effects on the populations of species which they directly impact. It follows then, that if invaders exert strong suppressive effects on some species then other species will indirectly benefit due to ecological release from interactions with directly impacted species. However, evidence that invasive vertebrates trigger such trophic cascades and alter community structure in terrestrial ecosystems remains rare. Here, we ask how the cane toad, a vertebrate invader that is toxic to many of Australia's vertebrate predators, influences lizard assemblages in a semi‐arid rangeland. In our study area, the density of cane toads is influenced by the availability of water accessible to toads. We compared an index of the abundance of sand goannas, a large predatory lizard that is susceptible to poisoning by cane toads and the abundances of four lizard families preyed upon by goannas (skinks, pygopods, agamid lizards and geckos) in areas where cane toads were common or rare. Consistent with the idea that suppression of sand goannas by cane toads initiates a trophic cascade, goanna activity was lower and small lizards were more abundant where toads were common. The hypothesis that suppression of sand goannas by cane toads triggers a trophic cascade was further supported by our findings that small terrestrial lizards that are frequently preyed upon by goannas were more affected by toad abundance than arboreal geckos, which are rarely consumed by goannas. Furthermore, the abundance of at least one genus of terrestrial skinks benefitted from allogenic ecosystem engineering by goannas where toads were rare. Overall, our study provides evidence that the invasion of ecosystems by non‐native species can have important effects on the structure and integrity of native communities extending beyond their often most obvious and frequently documented direct ecological effects.  相似文献   
953.
Active fires are considered to be the key contributor to, and critical consequence of, climate change. Quantifying the occurrence frequency and regional variations in global active fires is significant for assessing carbon cycling, atmospheric chemistry, and postfire ecological effects. Multiscale variations in fire occurrence frequencies have still never been fully investigated despite free access to global active fire products. We analyzed the occurrence frequencies of Visible Infrared Imaging Radiometer Suite (VIIRS) active fires at national, pan‐regional (tropics and extratropics) to global scales and at hourly, monthly, and annual scales during 2012–2017. The results revealed that the accumulated occurrence frequencies of VIIRS global active fires were up to 12,193 × 104, yet exhibiting slight fluctuations annually and with respect to the 2014–2016 El Niño event, especially during 2015. About 35.52% of VIIRS active fires occurred from July to September, particularly in August (13.06%), and typically between 10:00 and 13:00 Greenwich Mean Time (GMT; 42.96%) and especially at 11:00 GMT (17.65%). The total counts conform to a bimodal pattern with peaks in 5°–11°N (18.01%) and 5°–18°S (32.46%), respectively, alongside a unimodal distribution in terms of longitudes between 15°E and 30°E (32.34%). Tropical annual average of active fire (1,496.81 × 104) accounted for 75.83%. Nearly 30% were counted in Brazil, the Democratic Republic of the Congo, Indonesia, and Mainland Southeast Asia (MSEA). Fires typically occurred between June (or August) and October (or November) with far below‐average rainfall in these countries, while those in MSEA primarily occurred between February and April during the dry season. They were primarily observed between 00:00 and 02:00 GMT, between 12:00 and 14:00 within each Zone Time. We believed that VIIRS global active fires products are useful for developing fire detection algorithms, discriminating occurrence types and ignition causes via correlation analyses with physical geographic elements, and assessment of their potential impacts.  相似文献   
954.
Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems. Using a 17 year time series from an international bottom trawl survey, we investigated covariations of an entire demersal ecosystem (101 taxa) with the environment in the Celtic Sea. Our results showed that over the past two decades, biotic communities in the Celtic Sea were likely controlled more by environmental variables than fisheries, probably due to its long history of exploitation. At the scale of the entire zone, relations between taxa and the environment remained stable over the years, but at a local scale, in the center of the Celtic Sea, dynamics were probably driven by interannual variation in temperature. Fishing was an important factor structuring species assemblages at the beginning of the time series (2000) but decreased in importance after 2009. This was most likely caused by a change in spatial distribution of fishing effort, following a change in targeted taxa from nephrops to deeper water anglerfish that did not covary with fishing effort. Increasing bottom temperatures could induce additional changes in the coming years, notably in the cold‐water commercial species cod, hake, nephrops, and American plaice. We showed that analyzing covariation is an effective way to screen a large number of taxa and highlight those that may be most susceptible to future simultaneous increases in temperature and changes in exploitation pattern by fisheries. This information can be particularly relevant for ecosystem assessments.  相似文献   
955.
Soil faunal activity can be a major control of greenhouse gas (GHG) emissions from soil. Effects of single faunal species, genera or families have been investigated, but it is unknown how soil fauna diversity may influence emissions of both carbon dioxide (CO2, end product of decomposition of organic matter) and nitrous oxide (N2O, an intermediate product of N transformation processes, in particular denitrification). Here, we studied how CO2 and N2O emissions are affected by species and species mixtures of up to eight species of detritivorous/fungivorous soil fauna from four different taxonomic groups (earthworms, potworms, mites, springtails) using a microcosm set‐up. We found that higher species richness and increased functional dissimilarity of species mixtures led to increased faunal‐induced CO2 emission (up to 10%), but decreased N2O emission (up to 62%). Large ecosystem engineers such as earthworms were key drivers of both CO2 and N2O emissions. Interestingly, increased biodiversity of other soil fauna in the presence of earthworms decreased faunal‐induced N2O emission despite enhanced C cycling. We conclude that higher soil fauna functional diversity enhanced the intensity of belowground processes, leading to more complete litter decomposition and increased CO2 emission, but concurrently also resulting in more complete denitrification and reduced N2O emission. Our results suggest that increased soil fauna species diversity has the potential to mitigate emissions of N2O from soil ecosystems. Given the loss of soil biodiversity in managed soils, our findings call for adoption of management practices that enhance soil biodiversity and stimulate a functionally diverse faunal community to reduce N2O emissions from managed soils.  相似文献   
956.
A major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We investigated the environmental drivers and the demographic mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine survival of 13 large groups of populations (called stock units, SU) from two continental stock groups (CSG) in North America (NA) and Southern Europe (SE) over the period 1971–2014. We found strong coherence in the temporal variation in postsmolt marine survival among the 13 SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and declines by a factor of 1.8 over the 1971–2014 time series. Synchrony in survival trends is stronger between SU within each CSG. The common trends at the scale of NA and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal variations of the postsmolt survival are best explained by the temporal variations of sea surface temperature (SST, negative correlation) and net primary production indices (PP, positive correlation) encountered by salmon in common domains during their marine migration. Specifically, in the Labrador Sea/Grand Banks for populations from NA, 26% and 24% of variance is captured by SST and PP, respectively and in the Norwegian Sea for populations from SE, 21% and 12% of variance is captured by SST and PP, respectively. The findings support the hypothesis of a response of salmon populations to large climate‐induced changes in the North Atlantic simultaneously impacting populations from distant continental habitats.  相似文献   
957.
Scenario‐based biodiversity modelling is a powerful approach to evaluate how possible future socio‐economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio‐economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc‐seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area‐weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (?0.02) than the regional rivalry and fossil‐fuelled development scenarios (?0.06 and ?0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub‐Saharan Africa. In some scenario‐region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.  相似文献   
958.
Interlocked challenges of climate change, biodiversity loss, and land degradation require transformative interventions in the land management and food production sectors to reduce carbon emissions, strengthen adaptive capacity, and increase food security. However, deciding which interventions to pursue and understanding their relative co‐benefits with and trade‐offs against different social and environmental goals have been difficult without comparisons across a range of possible actions. This study examined 40 different options, implemented through land management, value chains, or risk management, for their relative impacts across 18 Nature's Contributions to People (NCPs) and the 17 Sustainable Development Goals (SDGs). We find that a relatively small number of interventions show positive synergies with both SDGs and NCPs with no significant adverse trade‐offs; these include improved cropland management, improved grazing land management, improved livestock management, agroforestry, integrated water management, increased soil organic carbon content, reduced soil erosion, salinization, and compaction, fire management, reduced landslides and hazards, reduced pollution, reduced post‐harvest losses, improved energy use in food systems, and disaster risk management. Several interventions show potentially significant negative impacts on both SDGs and NCPs; these include bioenergy and bioenergy with carbon capture and storage, afforestation, and some risk sharing measures, like commercial crop insurance. Our results demonstrate that a better understanding of co‐benefits and trade‐offs of different policy approaches can help decision‐makers choose the more effective, or at the very minimum, more benign interventions for implementation.  相似文献   
959.
Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.  相似文献   
960.
Ecotones mark zones of rapid change in ecological structure at various spatial scales. They are believed to be particularly susceptible to shifts caused by environmental transformation, making them key regions for studying the effects of global change. Here, we explored the variation in assemblage structure of aquatic primary producer and consumer communities across latitudinal transects in northeastern North America (Québec‐Labrador) to identify spatial patterns in biodiversity that indicated the location of transition zones across the landscape. We analyzed species richness and the cumulative rate of compositional change (expressed as beta‐diversity) of diatoms and chironomids to detect any abrupt shifts in the rate of spatial taxonomic turnover. We used principal coordinates analysis to estimate community turnover with latitude, then applied piecewise linear regression to assess the position of ecotones. Statistically significant changes in assemblage composition occurred at 52 and 55°N, corresponding to the transition between closed‐ and open‐crown forest, and to the southern onset of the forest tundra (i.e., the forest limit), respectively. The spatial distribution of ecotones was most strongly related to air temperature for chironomids and to vegetation‐ and soil‐related chemical attributes of lake water for diatoms, including dissolved organic carbon content and water color. Lakes at mid‐ to high‐latitudes currently face pressures from rapidly rising temperatures, accompanied by large increases in organic carbon inputs from their catchments, often leading to browning and its associated effects. The biota at the base of food webs in lakes located in transition zones are disproportionately affected by the cascading effects of these multi‐factorial changes, concurrent with pronounced terrestrial greening observed in these regions. Similar patterns of biotic shifts have been observed along alpine aquatic transects, indicating the potential for widespread restructuring of cold, high‐altitude and high‐latitude freshwater communities due to global change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号