首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1090篇
  免费   144篇
  国内免费   77篇
  2024年   5篇
  2023年   27篇
  2022年   26篇
  2021年   39篇
  2020年   47篇
  2019年   79篇
  2018年   59篇
  2017年   61篇
  2016年   57篇
  2015年   58篇
  2014年   64篇
  2013年   77篇
  2012年   64篇
  2011年   57篇
  2010年   48篇
  2009年   59篇
  2008年   71篇
  2007年   66篇
  2006年   60篇
  2005年   41篇
  2004年   40篇
  2003年   19篇
  2002年   21篇
  2001年   30篇
  2000年   19篇
  1999年   22篇
  1998年   13篇
  1997年   16篇
  1996年   14篇
  1995年   7篇
  1994年   14篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有1311条查询结果,搜索用时 31 毫秒
111.
The Amazon basin holds very high parrot species richness but almost nothing is known of parrot population densities in the region or how these vary between species, habitats, sites, and seasons. Such data are becoming important as humans impact on increasing areas of the region. Seventeen parrot species were surveyed using a line transect distance sampling method over 3 yr in floodplain and terra firme forests at two sites in the Tambopata region of southeast Peru. Density estimates for most species were in the range of 3.3–7.8/km2, with Brotogeris cyanoptera and Amazona farinosa reaching densities of 22 and 23/km2 in floodplain forest during the dry season. Parrot densities were higher in floodplain forest than in terra firme forest at both sites. The parrot communities of terra firme forests were similar across sites and seasons, but those in floodplain forests differed widely across sites and across seasons. Upper canopy birds are notoriously difficult to survey. We introduce a procedure to correct for the likely violation of the assumption that all birds on the transect line are detected (distance sampling assumption g(0) = 1). We correct g(0) based on calling rates of birds using a cue‐counting technique. Multipliers for g(0) differ across species and site, but not season. This method yielded density estimates on average 22 percent higher (6–40% higher in individual species) than those from the standard method.  相似文献   
112.
113.
Estimates of population size are frequently used in conservation. Volunteer‐conducted surveys are often the only source of information available, but their reliability is unclear. We compare data from a weakly structured national bird atlas collected by volunteer surveyors free to choose where and when to visit with data from an independent suite of monitoring surveys that used a stratified sampling design. We focus on the Mount Lofty Ranges, South Australia, a region that has lost most of its native vegetation. Both datasets comprise several thousand 20‐min 2‐ha searches carried out between 1999 and 2007. The atlas dataset reported more species, and covered habitats more comprehensively, but showed greater variability in the temporal and spatial distribution of survey effort. However, after we restricted the atlas dataset to native eucalypt woodlands, reporting rates from the two schemes were very strongly correlated. The structured surveys tended to record more species that are normally detected by call and the unstructured surveys recorded more species using edges and open habitats. Minimum population estimates from the two datasets agreed very well. The strength of concordance depended on whether overflying birds were included, highlighting the importance of distinguishing such records in future surveys. We conclude that appropriate calibration using selected regional surveys, including surveys to estimate absolute densities, can enable volunteer‐collected and weakly structured atlas data to be used to generate robust occupancy and minimum population estimates for many species at a regional scale.  相似文献   
114.
? Premise of the study: A past study based on morphological data alone showed that the means by which plants of the Australian genus Hakea reduce florivory is related to the evolution of bird pollination. For example, bird pollination was shown to have arisen only in insect-pollinated lineages that already produced greater amounts of floral cyanide, a feature that reduces florivory. We examine a central conclusion of that study, and a common assumption in the literature, that bird pollination arose in insect-pollinated lineages, rather than the reverse. ? Methods: We combined morphological and DNA data to infer the phylogeny and age of the Australian genus Hakea, using 9.2 kilobases of plastid and nuclear DNA and 46 morphological characters from a taxonomically even sampling of 55 of the 149 species. ? Key results: Hakea is rooted confidently in a position that has not been suggested before. The phylogeny implies that bird pollination is primitive in Hakea and that multiple shifts to insect pollination have occurred. The unexpectedly young age of Hakea (a crown age of ca. 10 Ma) makes it coincident with its primary bird pollinators (honeyeaters) throughout its history. ? Conclusions: Our study demonstrates that Hakea is an exception to the more commonly described shift from insect to bird pollination. However, we note that only one previous phylogenetic study involved Australian plants and their honeyeater pollinators and that our finding might prove to be more common on that continent.  相似文献   
115.
The genetic theory of morphological evolution postulates that form evolves largely by changing the expression proteins that are functionally conserved. It follows that understanding the function of proteins during different phases of development as well as the mechanisms by which the functions are modified is a prerequisite for understanding evolutionary change. Male pied flycatchers exhibit marked phenotypic variation in their breeding plumage. This variation has repeatedly been shown to have adaptive significance, but the molecular basis of this variation is not known. Here, we characterize the proteome of developing pied flycatcher feathers from differently pigmented males and also introduce a new method for examining the effect sizes of expression differences in protein interaction networks. Approximately 300 proteins were identified in the developing feathers of males. Gene products associated with cellular transport, cell metabolism and protein synthesis formed a large part of the developing feather proteome. Sixty‐five proteins associated with the development of the epidermis and/or pigmentation were detected in the data. The examination of expression level differences of protein–protein interaction networks revealed an immunological signalling–related network to exhibit significantly higher expression in black compared to brown males. Additionally, indications of differences in energy balance and oxidative stress related characteristics were detected. Together, these results provide new insight into the molecular mechanisms and evolutionary significance of plumage colour variation.  相似文献   
116.
The origin and timing of the diversification of modern birds remains controversial, primarily because phylogenetic relationships are incompletely resolved and uncertainty persists in molecular estimates of lineage ages. Here, we present a species tree for the major palaeognath lineages using 27 nuclear genes and 27 archaic retroposon insertions. We show that rheas are sister to the kiwis, emu and cassowaries, and confirm ratite paraphyly because tinamous are sister to moas. Divergence dating using 10 genes with broader taxon sampling, including emu, cassowary, ostrich, five kiwis, two rheas, three tinamous, three extinct moas and 15 neognath lineages, suggests that three vicariant events and possibly two dispersals are required to explain their historical biogeography. The age of crown group birds was estimated at 131 Ma (95% highest posterior density 122–138 Ma), similar to previous molecular estimates. Problems associated with gene tree discordance and incomplete lineage sorting in birds will require much larger gene sets to increase species tree accuracy and improve error in divergence times. The relatively rapid branching within neoaves pre-dates the extinction of dinosaurs, suggesting that the genesis of the radiation within this diverse clade of birds was not in response to the Cretaceous–Paleogene extinction event.  相似文献   
117.
Song learning has evolved within several avian groups. Although its evolutionary advantage is not clear, it has been proposed that song learning may be advantageous in allowing birds to adapt their songs to the local acoustic environment. To test this hypothesis, we analysed patterns of song adjustment to noisy environments and explored their possible link to song learning. Bird vocalizations can be masked by low‐frequency noise, and birds respond to this by singing higher‐pitched songs. Most reports of this strategy involve oscines, a group of birds with learning‐based song variability, and it is doubtful whether species that lack song learning (e.g. suboscines) can adjust their songs to noisy environments. We address this question by comparing the degree of song adjustment to noise in a large sample of oscines (17 populations, 14 species) and suboscines (11 populations, 7 species), recorded in Brazil (Manaus, Brasilia and Curitiba) and Mexico City. We found a significantly stronger association between minimum song frequency and noise levels (effect size) in oscines than in suboscines, suggesting a tighter match in oscines between song transmission capacity and ambient acoustics. Suboscines may be more vulnerable to acoustic pollution than oscines and thus less capable of colonizing cities or acoustically novel habitats. Additionally, we found that species whose song frequency was more divergent between populations showed tighter noise–song frequency associations. Our results suggest that song learning and/or song plasticity allows adaptation to new habitats and that this selective advantage may be linked to the evolution of song learning and plasticity.  相似文献   
118.
Few studies have found strong evidence to suggest that ecotones promote species richness and diversity. In this study we examine the responses of a high‐Andean bird community to changes in vegetation and topographical characteristics across an Andean tree‐line ecotone and adjacent cloud forest and puna grassland vegetation in southern Peru. Over a 6‐month period, birds and vegetation were surveyed using a 100 m fixed‐width Distance Sampling point count method. Vegetation analyses revealed that the tree‐line ecotone represented a distinctive high‐Andean vegetation community that was easily differentiated from the adjacent cloud forest and puna grassland based on changes in tree‐size characteristics and vegetation cover. Bird community composition was strongly seasonal and influenced by a pool of bird species from a wider elevational gradient. There were also clear differences in bird community measures between tree‐line vegetation, cloud forest and puna grassland with species turnover (β‐diversity) most pronounced at the tree‐line. Canonical Correspondence Analysis revealed that the majority of the 81 bird species were associated with tree‐line vegetation. Categorizing patterns of relative abundance of the 42 most common species revealed that the tree‐line ecotone was composed primarily of cloud forest specialists and habitat generalists, with very few species from the puna grassland. Only two species, Thlypopsis ruficeps and Anairetes parulus, both widespread Andean species more typical of montane woodland vegetation edges, were categorized as ecotone specialists. However, our findings were influenced by significant differences in species detectability between all three vegetation communities. Our study highlights the importance of examining ecotones at an appropriate spatial and temporal scale. Selecting a suitable distance between sampling points based on the detection probabilities of the target bird species is essential to obtain an unbiased picture of how ecotones influence avian richness and diversity.  相似文献   
119.
120.
Aim To move towards modelling spatial abundance patterns and to evaluate the relative impacts of climatic change upon species abundances as opposed to range extents. Location Southern Africa, including Lesotho, Namibia, South Africa, Swaziland and Zimbabwe. Methods Quantitative response surface models were fitted for 78 bird species, mostly endemic (68) or near‐endemic to the region, to model relationships between species reporting rates (i.e. the proportion of checklists reporting a species for a particular grid cell), as recorded by the Southern African Bird Atlas Project, and four bioclimatic variables derived from climatic data for the period 1961–90. With caution, reporting rates can be used as a proxy for abundance. Models were used to project potential impacts of a series of projected climatic change scenarios upon species abundance patterns and range extents. Results Most models obtained were robust with good predictive power. Projections of potential future abundance patterns indicate that the magnitude of impacts upon a proxy for abundance are greater than those upon range extent for the majority of species (82% by 2071–2100). For most species (74%) both abundance and range extent are projected to decrease by 2100. Impacts are especially severe if species are unable to realize projected range changes; when only the area of a species' simulated present range is considered, overall abundance decreases of more than 80% are projected for 19 (24%) of species examined. Main conclusions Our results indicate that projected climatic changes are likely to elicit greater relative changes in species abundances than range extents. For most species examined changes were decreases, suggesting the impacts upon biodiversity are likely generally to be negative. These results also suggest that previous estimates of the proportion of species at increased risk of extinction as a result of climatic change may, in some cases, be under‐estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号