首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   54篇
  国内免费   89篇
  2024年   2篇
  2023年   12篇
  2022年   7篇
  2021年   9篇
  2020年   20篇
  2019年   19篇
  2018年   16篇
  2017年   7篇
  2016年   16篇
  2015年   21篇
  2014年   16篇
  2013年   37篇
  2012年   18篇
  2011年   33篇
  2010年   13篇
  2009年   37篇
  2008年   24篇
  2007年   44篇
  2006年   27篇
  2005年   39篇
  2004年   31篇
  2003年   24篇
  2002年   49篇
  2001年   32篇
  2000年   28篇
  1999年   30篇
  1998年   27篇
  1997年   25篇
  1996年   29篇
  1995年   41篇
  1994年   22篇
  1993年   22篇
  1992年   19篇
  1991年   15篇
  1990年   18篇
  1989年   14篇
  1988年   11篇
  1987年   4篇
  1986年   9篇
  1985年   2篇
  1984年   10篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1958年   2篇
排序方式: 共有892条查询结果,搜索用时 15 毫秒
851.
852.
A facility for free air humidity manipulation (FAHM) was established to investigate the effect of increased air humidity on trees’ performance and their canopy functioning with respect to rising air humidity predicted for Northern Europe. The FAHM system enables air relative humidity (RH) to be increased up to 18 units (%) over the ambient level during mist fumigation, depending on the wind speed inside the experimental stand. Water was dispersed inside 14 × 14 m experimental plots in the form of mist with an average particle size of 50 μm from June to August in 2008, and from May to September in 2009. The average increase in RH was 7 units (%) over the whole period of humidification in 2008 (P < 0.05). The average diurnal stem sap flux density per unit projected leaf area (F) in silver birch (Betula pendula Roth.) trees was 24.8% (P < 0.05) and 27.2% (P < 0.01) higher in control (C) plots compared to humidification (H) plots during misting in 2008 and 2009, respectively. However, the difference between C and H plots was statistically insignificant (P > 0.05) in silver birch on the days without misting. In hybrid aspen (Populus tremula L. × P. tremuloides Michx.) the average difference in F between C and H plots was 61.1% (P < 0.001) during mist fumigation in the summer of 2009. Nevertheless, the difference was considerable (38.8%; < 0.001) also on the days without misting, reflecting the impact of plant inner factors on F as a result of long-term acclimation to fumigation. The leaves of silver birch in a humidified plot demonstrated up to 2.4 °C lower (P < 0.05) leaf temperature (TL) compared to the control plot in 2009. The decline in TL decreased the humidity gradient between leaf and air by about 1/3, whereas 2/3 of the effect was caused directly by changes in air humidity in the leaf boundary layer. Our preliminary data suggest that the FAHM experimental facility enables water fluxes through a deciduous tree canopy to be reduced and this effect is attributable both to the increased air humidity and decreased leaf temperature. Changes in these two basic factors may create considerable differences in the physiology, anatomy and nutrition of a whole tree, also affecting forest functioning in the light of global climate change.  相似文献   
853.
854.
855.
One goal of the Icecolors 1993 study was to determine whether or not photosystem II (PSII) was a major target site for photoinhibition by ultraviolet-B radiation (QUVB, 280–320 nm) in natural communities. Second, the degree to which QUVBinhibition of PSII could account for QUVBeffects on whole cell rates of carbon fixation in phytoplankton was assessed. On 1 October, 1993, at Palmer Station (Antarctica), dense samples of a frazil ice algal community were collected and maintained outdoors in the presence or a bsence of QUVBand l or ultraviolet-A (QUVB, 320–400 nm) radiation. Samples were then collected at intervals over the day to track the time course of UV inhibition of primary production. The ice algae were assessed for changes in pigment composition and rates of carbon fixation. The quantum yield of PSII (ØIIc°) was measured by P ulse A mplitude M odulated fluorometry. Over the day, ØIIc° declined due to increasing time-integrated dose exposure of QUVB. The QUVB-driven inhibition of ØIIc° increased from 4% in the early morning hours to a maximum of 23% at the end of the day. The QUVB photoinhibition of PSII quantum yield did not recover by 6 h after sunset. In contrast, photoinhibition by QUVA and photosynthetically available radiation (QPAR, 400–700 nm) recovered during the late afternoon. Flourescence-based estimates of carbon fixation rates were linearly correlated (P =0.002, r2=0.45) with measured carbon fixation. Fluorescence overestimated the observed QUVB inhibition in measured carbon fixation rates by 8% in the morning hours; however, the discrepancy increased during the afternoon. Therefore, researchers should be cautious in using fluorescence measurements to infer ultraviolet inhibition for rates of carbon fixation until there is a greater understanding of the coupling of carbon metabolism to PSII activity for natural populations. Despite these current limitations, fluorescence-based technologies represent powerful tools for studying the impact of the ozone hole on natural populations on spatial/ temporal scales not possible using conventional productivity techniques.  相似文献   
856.
Calatayud  Á.  Barreno  E. 《Photosynthetica》2000,38(1):149-154
The effects of foliar spraying of the dithiocarbamate zineb on two cultivars of tomato grown in the field in a site with high ozone concentrations were studied by means of biomass assessment, antioxidant enzyme assays, lipid peroxidation, and chlorophyll fluorescence measurements. Zineb prevented the peroxidation of membrane lipids and decreased the activity of scavenging enzymes, which suggests that plants sprayed with zineb are subjected to lower oxidative stress than controls. The beneficial effects of zineb protection is the utilization of a larger fraction of absorbed radiant energy in photosynthesis and a larger fruit yield in plants of both cultivars.  相似文献   
857.
858.
859.
The tropospheric level of the phytotoxic air pollutant ozone has increased considerably during the last century, and is expected to continue to rise. Long-term exposure of higher plants to low ozone concentrations affects biochemical processes prior to any visible symptoms of injury. The current critical level of ozone used to determine the threshold for damaging plants (biomass loss) is still based on the seasonal sum of the external concentration above 40 nl·l−1 (AOT40). Taking into account stomatal conductance and the internal capacity of leaf defences, a more relevant concept should be based upon the 'effective ozone flux', the balance between the stomatal flux and the intensity of cellular detoxification. The large decrease in the Rubisco/PEPc ratio reflects photosynthetic damage from ozone, and a large increase in activity of cytosolic PEPc, which allows increased malate production. Although the direct detoxification of ozone (and ROS produced from its decomposition) is carried out primarily by cell wall ascorbate, the existing level of this antioxidant is not sufficient to indicate the degree of cell sensitivity. In order to regenerate ascorbate, NAD(P)H is needed as the primary supplier of reducing power. It is hypothesised that increased activity of the catabolic pathways and associated shunts (glucose-6-phosphate dehydrogenase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme) can provide sufficient NAD(P)H to maintain intracellular detoxification. Thus, measurement of the level of redox power would contribute to determination of the 'effective ozone dose', serving ultimately to improve the ozone risk index for higher plants.  相似文献   
860.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号