首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   748篇
  免费   53篇
  国内免费   88篇
  2024年   1篇
  2023年   11篇
  2022年   6篇
  2021年   9篇
  2020年   20篇
  2019年   19篇
  2018年   16篇
  2017年   7篇
  2016年   16篇
  2015年   21篇
  2014年   16篇
  2013年   37篇
  2012年   18篇
  2011年   33篇
  2010年   13篇
  2009年   37篇
  2008年   24篇
  2007年   44篇
  2006年   27篇
  2005年   39篇
  2004年   31篇
  2003年   24篇
  2002年   49篇
  2001年   32篇
  2000年   28篇
  1999年   30篇
  1998年   27篇
  1997年   25篇
  1996年   29篇
  1995年   41篇
  1994年   22篇
  1993年   22篇
  1992年   19篇
  1991年   15篇
  1990年   18篇
  1989年   14篇
  1988年   11篇
  1987年   4篇
  1986年   9篇
  1985年   2篇
  1984年   10篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1958年   2篇
排序方式: 共有889条查询结果,搜索用时 906 毫秒
811.
开放式空气CO2浓度增高对水稻冠层微气候的影响   总被引:12,自引:3,他引:12  
利用位于江苏省无锡市安镇的我国唯一的农田开放式空气CO2 浓度增高 (FACE)系统平台 ,于2 0 0 1年 8月 2 6日至 10月 13日 (水稻抽穗至成熟期 )进行水稻作物冠层微气候连续观测 ,以研究FACE对水稻冠层微气候特征的影响 .结果表明 ,FACE降低了水稻叶片的气孔导度 ,FACE与对照水稻叶片气孔导度的差异上层叶片大于下层叶片 ,生长前期大于生长后期 .FACE使白天水稻冠层和叶片温度升高 ,这种差异生长前期大于生长后期 ;但FACE对夜间水稻冠层温度的影响不明显 .在水稻旺盛生长的抽穗开花期 ,晴天正午前后FACE水稻冠层温度比对照高 1.2℃ ;从开花至成熟期 ,FACE水稻冠层白天平均温度比对照高 0 .4 3℃ .FACE对冠层空气温度也有影响 ,白天水稻冠层空气温度FACE高于对照 ,这种差异随太阳辐射增强而增大且冠层中部大于冠层顶部 ;冠层中部空气温度FACE与对照的差异 (Tface-Tambient)日最大值在 0 .4 7~ 1.2℃之间 ,而冠层顶部的Tface-Tambient日最大值在 0 .37~ 0 .8℃之间 .夜间水稻冠层空气温度FACE与对照差别不大 ,变化在± 0 .3℃之内 .而FACE对水稻冠层空气湿度无显著影响 ,表明FACE使水稻叶片气孔导度降低 ,从而削弱了植株的蒸腾降温作用 ,导致水稻冠层温度和冠层空气温度升高 ,改变了整个水稻冠层的温度环  相似文献   
812.
Background: There is a growing interest in understanding the gas exchange between the atmosphere and seasonally snow-covered regions, especially in light of projections that climate change will alter the timing and extent of seasonal snow cover. In snow-covered ecosystems, gas fluxes are due both to microbial activity in the snow-covered soils and to chemical and physical reactions with the various gases and/or dissolved constituents in the snowpack. Niwot Ridge, in the Colorado Rocky Mountains, has one of the most extensive sets of measurements of winter gas exchange globally.

Aims: Our goal was to examine the temporal patterns and environmental controls on Niwot Ridge of gas fluxes for gases with different sources and sinks.

Methods: Here, we review the concentrations and fluxes that have been measured for carbon dioxide, nitrous oxide, methane, nitrogen oxides, ozone, gaseous elemental mercury and volatile organic carbon compounds.

Results and Conclusions: We looked for similarities and differences among the gases, but in many cases, the origin, fate and controls of these fluxes still need to be determined. However, we believe that many of the biologically driven reactions are the result of exponential growth of a winter microbial community during the long period of stable environmental conditions under the seasonal snowpack.  相似文献   
813.
Free air carbon dioxide enrichment: development,progress, results   总被引:14,自引:0,他引:14  
Hendrey  G. R.  Lewin  K. F.  Nagy  J. 《Plant Ecology》1993,104(1):17-31
Credible predictions of climate change depend in part on predictions of future CO2 concentrations in the atmosphere. Terrestrial plants are a large sink for atmospheric CO2 and the sink rate is influenced by the atmospheric CO2 concentration. Reliable field experiments are needed to evaluate how terrestrial plants will adjust to increasing CO2 and thereby influence the rate of change of atmospheric CO2. Brookhaven National Laboratory (BNL) has developed a unique Free-Air CO2 Enrichment (FACE) system for a cooperative research program sponsored by the U.S. Department of Energy and U.S. Department of Agriculture, currently operating as the FACE User Facility at the Maricopa Agricultural Center (MAC) of the University of Arizona. The BNL FACE system is a tool for studying the effects of CO2 enrichment on vegetation and natural ecosystems, and the exchange of carbon between the biosphere and the atmosphere, in open-air settings without any containment. The FACE system provides stable control of CO2 at 550 ppm ±10%, based on 1-min averages, over 90% of the time. In 1990, this level of control was achieved over an area as large as 380 m2, at an annual operating cost of $668 m–2. During two field seasons of enrichment with cotton (Gossypium hirsutum) as the test plant, enrichment to 550 ppm CO2 resulted in significant increases in photosynthesis and biomass of leaves, stems and roots, reduced evapotranspiration, and changes in root morphology. In addition, soil respiration increased and evapotranspiration decreased.  相似文献   
814.
The tick Rhipicephalus sanguineus sensu lato has great medical and veterinary importance, mainly because the ability to transmit many diseases, causing harm to pets but also risks to public health. The blood spoliation and transmission of pathogens occur because of the immunosuppressive action of these ticks' saliva, a potent mixture of bioactive substances that is secreted by the salivary glands, one of the organs responsible for their biological success, and hence the target of studies for their control. Ozone has promise for use as an alternative acaricide, due to its proven efficiency in controlling agricultural and food pests, besides posing no risk of environmental contamination or to animal and human health. Therefore, this study evaluated the acaricidal potential of exposure of females of R. sanguineus s.l. to ozonated water at many concentrations and analysed the morphophysiological alterations of the salivary glands, employing histological and light microscopic techniques. The results demonstrated that the ozonated water at the concentrations investigated caused severe alterations in the salivary glands, bringing a new perspective for control of R. sanguineus s.l., through an ecologically correct method due to the absence of harm to non‐target organisms and the environment.  相似文献   
815.
816.
The polymerase chain reaction (PCR) was developed to detect Leptospiraceae. Primers were used to amplify 1 631 base-pair (bp) 5'-region of 16S rDNA. Representative strains from the species, Leptospira interrogans sensu stricto, L. borgpetersenii, L. noguchii, L. santarosai, L. weilii, L. inadai, L. meyeri and the single member strain of Leptonema were amplified. In contrast, strains representing the saprophytic species. L. biflexa, L. wolbachii and L. parva were not amplified. There was no PCR product from 23 phylogenetically unrelated species of bacteria. As little as 10-1 pg of purified DNA and as few as 10-1 leptospires could be detected using the PCR analysis. Isolates of leptospires from clinical sources gave a positive PCR band, but those from surface waters did not.  相似文献   
817.
Plant growth regulators control ozone damage to wheat yield   总被引:6,自引:0,他引:6  
  相似文献   
818.
819.
820.
There are several air pollution issues that concern the international community at the regional and global level, including acid deposition, heavy metals, persistent organic pollutants, stratospheric ozone depletion, and climate change. Governments at the regional and global levels have entered into various agreements in an effort to deal with these problems. This paper deals with two major global atmospheric change issues: stratospheric ozone depletion and climate change. The focus is on the policy responses of the United States to these global issues. The United States has signed and ratified international agreements to deal with both problems. The Vienna Convention and the Montreal Protocol on Substances that Deplete the Ozone Layer have led to an effort in both developed and developing countries to phase out ozone depleting substances. The United Nations Framework Convention on Climate Change (UNFCCC) has been signed and ratified by over 180 countries. The UNFCC contained no binding targets and timetables for emissions reductions. The Kyoto Protocol (1997) to the UNFCCC did contain targets and timetables for reductions of greenhouse gases on the part of developed countries. The United States has signed but not ratified the Kyoto Protocol. The United States has experienced some movement to reduce greenhouse gas emissions on the part of various levels of government as well as the private sector. The policy process is constantly informed by scientific research. In the case of stratospheric ozone depletion and climate change, much of this work is carried out under the auspices of international scientific panels. From a policy perspective, there is a great deal of interest in the use of indicators for assessing the scope and magnitude of these problems, both for fashioning policy responses as well as assessing the impact of adopted programs to reduce ozone depleting substances, and potentially, greenhouse gases. This paper will discuss some of the indicators used for stratospheric ozone depletion and climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号