首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   56篇
  国内免费   55篇
  2023年   13篇
  2022年   11篇
  2021年   10篇
  2020年   26篇
  2019年   19篇
  2018年   20篇
  2017年   27篇
  2016年   25篇
  2015年   23篇
  2014年   38篇
  2013年   71篇
  2012年   21篇
  2011年   47篇
  2010年   25篇
  2009年   42篇
  2008年   37篇
  2007年   45篇
  2006年   47篇
  2005年   61篇
  2004年   48篇
  2003年   38篇
  2002年   43篇
  2001年   36篇
  2000年   35篇
  1999年   37篇
  1998年   24篇
  1997年   34篇
  1996年   37篇
  1995年   25篇
  1994年   31篇
  1993年   44篇
  1992年   45篇
  1991年   25篇
  1990年   34篇
  1989年   38篇
  1988年   35篇
  1987年   27篇
  1986年   41篇
  1985年   22篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   19篇
  1980年   23篇
  1979年   9篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1451条查询结果,搜索用时 15 毫秒
941.
A Tn5 insertional prototrophic mutant of Paracoccus denitrificans (UBM219) was generated which grew on high (>1 mM) but not low (<0.5 mM) ammonium as sole nitrogen source. It did not utilize nitrate and most amino acids except glutamate and aspartate. UBM219 showed more than 10-fold lower levels of ammonium (methylammonium) transport, aspartate and alanine aminotransferase, but more than 10-fold higher activities of glutamate dehydrogenase and glutamate synthase. This pleiotropy indicates a mutation in a regulatory gene affecting nitrogen metabolism in general. — Ammonia assimilation pathways and regulation in Paracoccus resemble the patterns in enterobacteria with the exception, that alanine is generated by amino transfer from glutamate to pyruvate.Non-standard abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GluDH glutamate dehydrogenase - GPT glutamate/pyruvate aminotransferase - GOT glutamate/oxaloacetate aminotransferase  相似文献   
942.
Summary A 3.7 kb DNA fragment of yeast chromosome IV has been sequenced that contains the SFA gene which, when present on a multi-copy plasmid in Saccharomyces cerevisiae, confers hyper-resistance to formaldehyde. The open reading frame of SFA is 1158 by in size and encodes a polypeptide of 386 amino acids. The predicted protein shows strong homologies to several mammalian alcohol dehydrogenases and contains a sequence characteristic of binding sites for NAD. Overexpression of the SFA gene leads to enhanced consumption of formaldehyde, which is most probably the reason for the observed hyper-resistance phenotype. In sfa:LEU2 disruption mutants, sensitivity to formaldehyde is correlated with reduced degradation of the chemical. The SFA gene shares an 868 by divergent promoter with UGX2 a gene of yet unknown function. Promoter deletion studies with a SFA promoter-lacZ gene fusion construct revealed negative interference on expression of SFA by upstream sequences. The upstream region between positons – 145 and – 172 is totally or partially responsible for control of inducibility of SFA by chemicals such as formaldehyde (FA), ethanol and methyl methanesulphonate. The 41 kDa SFA-encoded protein was purified from a hyper-resistant transformant; it oxidizes long-chain alcohols and, in the presence of glutathione, is able to oxidize FA. SFA is predicted to code for a long-chain alcohol dehydrogenase (glutathione-dependent formaldehyde dehydrogenase) of the yeast S. cerevisiae.  相似文献   
943.
Why do inherently fast-growing species from productive habitats generally have a higher rate of biomass production in short-term low-nitrogen experiments than slow-growing species from unproductive habitats, whereas the opposite is found in long-term experiments? Is this mainly due to inherent differences in biomass allocation, leaf characteristics or the plants' physiology? To analyse these questions we grew five monocotyledonous species from productive and unproductive habitats in a climate chamber at both high and low nitrogen supply. Nitrate was supplied exponentially, enabling us to compare inherent differences in morphological and physiological traits between the species, without any interference due to differences in the species' ability to take up nutrients. At high nitrogen supply, we found major inherent differences in specific leaf area and nitrogen productivity, i.e. daily biomass increment per unit plant nitrogen, where-as there were only small differences in net assimilation rate, i.e. daily biomass increment per unit leaf area, and biomass partitioning. We propose that the higher specific leaf area and nitrogen productivity of inherently fast-growing species are the key factors explaining their high abundance in productive habitats compared with inherently slow-growing ones. At low nitrogen supply, the net assimilation rate was decreased to a similar extent for all species, compared with that at high nitrogen supply. The nitrogen productivity of the inherentlyfast-growing species decreased with decreasing nitrogen supply, whereas that of the inherently slow-growing species remained constant. There were no inherent differences in nitrogen productivity in this treatment. At this low nitrogen supply, the inherently fast-growing species invested relatively more biomass in their roots that the slow-growing ones did. The inherently fast-growing species still had a higher specific leaf area at low nitrogen supply, but the difference between species was less than that at high nitrogen supply. Based on the present results and our optimization model for carbon and nitrogen allocation (Van der Werf et al. 1993a), we propose that the relatively large investment in root biomass of fast-growing species is the key factor explaining their higher biomass production in short-term experiments. We also propose that in the long run the competitive ability of the slow-growing species will increase due to a lower turnover rate of biomass. It is concluded that the plant's physiology (net assimilation rate and nitrogen productivity), only plays a minor role in the species' competitive ability in low-nitrogen environments.  相似文献   
944.
Although wheat (Triticum aestivum L.) is the dominant crop of the semi-arid plains of Canada and the western United States, lentil (Lens culinaris Medik.) has become an important alternative crop. Sources and seasonal accumulation of N must be understood in order to identify parameters that can lead to increased N2-fixing activity and yield. Inoculated lentil was grown in a sandy-loam soil at an irrigated site in Saskatchewan, Canada. Wheat was used as the reference crop to estimate N2 fixation by the A-value approach. Lentil and wheat received 10 and 100 kg N ha−1 of ammonium nitrate, respectively. Crops were harvested six times during the growing season and plant components analyzed. During the first 71 days after planting the wheat had a higher daily dry matter and N accumulation compared to lentil. However, during the latter part of the growing season, daily dry matter and N accumulation were greater for lentil. The maximum total N accumulation for lentil at maturity was 149 kg ha−1. In contrast, wheat had a maximum N accumulation of 98 kg ha−1 in the Feekes 11.1 stage, or 86 days after planting. The maximum daily rates of N accumulation were 3.82 kg N ha−1 day−1 for lentil and 2.21 kg N ha−1 day−1 for wheat. The percentage of N derived from N2 fixation (% Ndfa) ranged from 0 at the first harvest to 92 % at final harvest. Generative plant components had higher values for % Ndfa than the vegetative components which indicates that N in the reproductive plant parts was derived largely from current N2 fixation and lentil continued to fix N until the end of the pod fill stage. At final harvest, lentil had derived 129 kg N ha−1 from N2 fixation with maximum N2-fixing activity (4.4 kg N ha−1 day−1) occurring during the early stages of pod fill. Higher maximum rates of N2-fixing activity than net N accumulation (3.82 kg N ha−1 day−1) may have been caused by N losses like volatilization. In addition, lentil provided a net N contribution to the soil of 59 kg ha−1 following the removal of the grain.  相似文献   
945.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   
946.
The photosynthate costs of processes (amino acid and protein synthesis and turnover, and pH regulation) associated with the utilization of nitrate (NO3), ammonium (NH4+) or glutamine (Gln) for plant growth were estimated. Based on these estimates, the effects of these forms of nitrogen (N) on the carbon balance of plants and on shoot–root biomass allocation were evaluated. The results indicated that NO3 as an N source for plant growth is not substantially more expensive to utilize than either NH4+ or Gln, particularly in the long term when costs due to protein turnover dominate the total costs of N utilization. It is also suggested that the photosynthate use in processes associated with N assimilation has little impact on the carbon balance of plants, and hence on shoot–root biomass allocation.  相似文献   
947.
Food assimilation by the detritivorous fish Prochilodus lineatus, throughout a life cycle, was studied by means of fatty acid analysis. Fish length ranged from 2.7 to 55 cm and weight from 2 to 2670 g. Samples for fatty acid determination were taken from the mesenteric deposit in adults and from the whole fish in juveniles. Phyto and zooplankton, and superficial mud were also studied. Samples were taken from the principal channel of the Paraná River and lentic environments in its alluvial plain (60 ° 29W and 31 ° 40S). Fatty acids in the smaller fish (2.8–3.8 cm) indicated the assimilation of zoo and phytoplankton. Longer P. lineatus have a fat-deficient diet, particularly in polyunsaturated acids. At different stages of life, P. lineatus is adapted to different sources of food. When young, it eats zoo- and phytoplankton, becomes gradually detritivorous and has a series of adaptations of the digestive tract (morphological and histological) to enable it to assimilate detritus.  相似文献   
948.
In Phormidium laminosum cells, nitrogen starvation caused a decrease in the intracellular levels of all amino acids, except glutamate, and an increase in the total level of the analyzed organic acids. The addition of nitrate or ammonium to N-starved cells resulted in substantial increases in the pool size of most amino acids. Upon addition of ammonium the total level of organic acids diminished, whereas it increased upon addition of nitrate, after a transient decay during the first minutes. Nitrogen resupply stimulated amino acid synthesis, the effect being faster and higher when ammonium was assimilated. The data indicate that nitrate and ammonium assimilation induced an enhancement of carbon flow through the glycolytic and the tricarboxylic-acid pathways to amino acid biosynthesis, with a concurrent decrease in the carbohydrate reserves. The results suggest that the availability of carbon skeletons limited the rate of ammonium assimilation, whereas the availability of reducing equivalents limited the rate of nitrate assimilation.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) This work has been supported by grants from the Spanish Ministry of Education and Science (DGICYT and PB92-0464) and the University of the Basque Country (042.310-EC203/94) M.I.T. and J.A.G. were the recipients of fellowships from the Basque Government.  相似文献   
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号