首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   56篇
  国内免费   55篇
  2023年   13篇
  2022年   11篇
  2021年   10篇
  2020年   26篇
  2019年   19篇
  2018年   20篇
  2017年   27篇
  2016年   25篇
  2015年   23篇
  2014年   38篇
  2013年   71篇
  2012年   21篇
  2011年   47篇
  2010年   25篇
  2009年   42篇
  2008年   37篇
  2007年   45篇
  2006年   47篇
  2005年   61篇
  2004年   48篇
  2003年   38篇
  2002年   43篇
  2001年   36篇
  2000年   35篇
  1999年   37篇
  1998年   24篇
  1997年   34篇
  1996年   37篇
  1995年   25篇
  1994年   31篇
  1993年   44篇
  1992年   45篇
  1991年   25篇
  1990年   34篇
  1989年   38篇
  1988年   35篇
  1987年   27篇
  1986年   41篇
  1985年   22篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   19篇
  1980年   23篇
  1979年   9篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1451条查询结果,搜索用时 15 毫秒
901.
Vibrio vulnificus strain L-180, a clinical isolate, can obtain iron from a synthetic heme, iron-tetra(4-sulfonatophenyl)porphyrin (Fe-TPPS), as well as from a natural heme, protoheme. This assimilation of iron bound to TPPS was demonstrated to be a common property of V. vulnificus by testing a total of 27 strains isolated from both clinical and environmental sources. Strain L-180 could also utilize Fe-TCPP, but not Fe-TMPyP, as a sole iron source. TPPS or its complex with a metal ion reduced bacterial multiplication in the broth containing a minimum dose of Fe-TPPS. When inoculated into human serum supplemented with Fe-TCPP, L-180 could grow only in the presence of a protease from the same bacterium. In both TPPS and TCPP, each side chain of a porphyrin ring has a negative charge. Therefore, this negative charge may be important for interaction with an outer membrane receptor involving in a heme-assimilating system of V. vulnificus.  相似文献   
902.
903.
During the evolution of higher-plant root and leaf-type-specific Fd : FNR complexes from an original cyanobacterial type progenitor, rearrangement of molecular interaction has altered the relative orientation of prosthetic groups and there have been changes in complex induced conformational change. Selection has presumably worked on mutation of residues responsible for interaction between the two proteins, favoring optimized electron flow in a specific direction, and efficient dissociation following specific oxidation of leaf Fd and reduction of root Fd. Major changes appear to be: loss in both leaf and root complexes of a cyanobacterial mechanism that ensures Fd dissociation from the complex following change in Fd redox state, development of a structural rearrangement of Fd on binding to leaf FNR that results in a negative shift in Fd redox potential favorable to photosynthetic electron flow, creation of a vacant space in the root Fd:FNR complex that may allow access to the redox centers of other enzymes to ensure efficient channeling of heterotrophic reductant into bioassimilation. Further structural analysis is essential to establish how root type FNR distinguishes between Fd isoforms, and discover how residues not directly involved in intermolecular interactions may affect complex formation.  相似文献   
904.
On Christmas Island, Indian Ocean, the diet of robber crabs, Birgus latro (Linnaeus) was generally high in fat, storage polysaccharides or protein and largely comprised fruits, seeds, nuts and animal material. The plant items also contained significant amounts of hemicellulose and cellulose. In laboratory feeding trials, crabs had similar intakes of dry matter when fed artificial diets high in either fat or storage polysaccharide, but intake was lower on a high protein diet. Assimilation coefficients of dry matter (69–74%), carbon (72–81%), nitrogen (76–100%), lipid (71–96%) and storage polysaccharide (89–99%) were high on all three diets. B. latro also assimilated significant amounts of the chitin ingested in the high protein diet ( 93%) and hemicellulose (49.6–65%) and cellulose (16–53%) from the high carbohydrate and high fat diets. This is consistent with the presence of chitinase, hemicellulase and cellulase enzymes in the digestive tract of B. latro. The mean retention time (27.2 h) for a dietary particle marker (57Co-labelled microspheres) was longer than measured in leaf-eating land crabs. The feeding strategy of B. latro involves the selection of highly digestible and nutrient-rich plant and animal material and retention of the digesta for a period long enough to allow extensive exploitation of storage carbohydrates, lipids, protein and significant amounts of structural carbohydrates (hemicellulose, cellulose and chitin).Communicated by I.D. Hume  相似文献   
905.
AIMS: To investigate the relationship between the activity of pyruvate dehydrogenase (PDH) bypass and the production of pyruvate of a multi-vitamin auxotrophic yeast Torulopsis glabrata. METHODS AND RESULTS: Torulopsis glabrata CCTCC M202019, a multi-vitamin auxotrophic yeast that requires acetate for complete growth on glucose minimum medium, was selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata WSH-IP303 screened in previous study [Li et al. (2001) Appl. Microbiol. Biotechnol. 55, 680-685]. Strain CCTCC M202019 produced 21% higher pyruvate than the parent strain and was genetically stable in flask cultures. The activities of the pyruvate metabolism-related enzymes in parent and mutant strains were measured. Compared with the parent strain, the activity of pyruvate decarboxylase (PDC) of the mutant strain CCTCC M202019 decreased by roughly 40%, while the activity of acetyl-CoA synthetase (ACS) of the mutant increased by 103.5 or 57.4%, respectively, in the presence or absence of acetate. Pyruvate production by the mutant strain CCTCC M202019 reached 68.7 g l(-1) at 62 h (yield on glucose of 0.651 g g(-1)) in a 7-l jar fermentor. CONCLUSIONS: The increased pyruvate yield in T. glabrata CCTCC M202019 was due to a balanced manipulation of the PDH bypass, where the shortage of cytoplasmic acetyl-CoA caused by the decreased activity of PDC was properly compensated by the increased activity of ACS. SIGNIFICANCE AND IMPACT OF THE STUDY: Manipulating the PDH bypass may provide an alternative approach to enhance the production of glycolysis-related metabolites.  相似文献   
906.
The rates of photosynthetic 2 assimilation were determined in fully expanded second leaves of 21-day-old wheat (Triticum aestivum L.) seedlings grown on media supplied with nitrate or ammonia and on a nitrogen-free medium (NO3 - or NH4 +-treatments and N-deficit treatment, respectively). The maximal quantum efficiency of photosynthesis was independent on conditions of nitrogen nutrition. When leaves were exposed to 0.03% 2 and high-intensity light, the lowest photosynthetic rate was noted for N-deficit treatment and the highest rate was characteristic of NH4 + treatment. The elevation of the 2 concentration in the gas phase to 0.1% stimulated photosynthesis at high-intensity light in all treatments. The rate of 2 uptake by the leaf of N-deficient seedlings increased with 2 concentration to a larger extent than in other treatments and approached the 2 uptake rate characteristic of the NO3 treatment. In plants grown on a nitrogen-free medium, the leaf accumulated lesser amounts of reduced nitrogen and higher amounts of starch, but the content of chloroplast protein corresponded to that of NO3 treatment. In the leaf of NH4 +-treated seedlings, the rate of 2 assimilation was higher than in the leaf of NO3 treated plants, regardless of the composition of the gas mixture. The ammonium-type nutrition, as compared to the nitrate-type nutrition, elevated the amount of reduced nitrogen in the leaf and promoted accumulation of chlorophyll and protein, the chloroplast protein in particular.  相似文献   
907.
Azospirillum brasilense glutamate synthase (GltS) is a complex iron-sulfur flavoprotein whose catalytically active alphabeta protomer (alpha subunit, 162kDa; beta subunit, 52.3 kDa) contains one FAD, one FMN, one [3Fe-4S](0,+1), and two [4Fe-4S](+1,+2) clusters. The structure of the alpha subunit has been determined providing information on the mechanism of ammonia transfer from L-glutamine to 2-oxoglutarate through a 30 A-long intramolecular tunnel. On the contrary, details of the electron transfer pathway from NADPH to the postulated 2-iminoglutarate intermediate through the enzyme flavin co-factors and [Fe-S] clusters are largely indirect. To identify the location and role of each one of the GltS [4Fe-4S] clusters, we individually substituted the four cysteinyl residues forming the first of two conserved C-rich regions at the N-terminus of GltS beta subunit with alanyl residues. The engineered genes encoding the beta subunit variants (and derivatives carrying C-terminal His6-tags) were co-expressed with the wild-type alpha subunit gene. In all cases the C/A substitutions prevented alpha and beta subunits association to yield the GltS alphabeta protomer. This result is consistent with the fact that these residues are responsible for the formation of glutamate synthase [4Fe-4S](+1,+2) clusters within the N-terminal region of the beta subunit, and that these clusters are implicated not only in electron transfer between the GltS flavins, but also in alphabeta heterodimer formation by structuring an N-terminal [Fe-S] beta subunit interface subdomain, as suggested by the three-dimensional structure of dihydropyrimidine dehydrogenase, an enzyme containing an N-terminal beta subunit-like domain.  相似文献   
908.
909.
Pseudomonas putida vanillate-O-demethylase consisting of VanA and VanB was expressed in Escherichia coli strain K-12. Recombinant E. coli strain K-12 cells expressing VanAB efficiently converted vanillate into protocatechuate with glucose consumption. Mutant lacking either pgi or zwf showed higher or lower converting activity than the parental strain, respectively. Formaldehyde, which is the by-product of the demethylation, was converted into formate in the cellular reaction. Formate accumulation was blocked by gene disruption of the E. coli frmA that coded glutathione-dependent formaldehyde dehydrogenase.  相似文献   
910.
Escherichia coli HD701, a hydrogenase-upregulated strain, has the potential for industrial-scale H2 production but is unable to metabolise sucrose, which is a major constituent of many waste materials that could be used as feedstocks for H2 production processes. A 70 kb plasmid (pUR400), which carries the genes necessary for sucrose transport into the cell and its metabolism, was conjugated into E. coli strains HD701 and FTD701 [a derivative of HD701 which has a deletion of the tatC gene of the twin arginine transport (Tat) protein system] from an E. coli K12 strain. Comparative studies on H2 evolution by FTD701 and HD701, with and without the pUR400 plasmid, were made using sucrose as substrate. The parental strains did not evolve H2, although HD701/pUR400 and FTD701/pUR400 evolved 1.27 ± 0.09 and 1.38 ± 0.05 ml H2 mg dry wt–1 l culture–1, respectively over 10 h. This work provides the choice for using a recombinant E. coli strain, which produces H2 from sucrose, as an alternative to coupling-in an upstream invertase, and hence this provides a simpler method for the bioproduction of H2 from sucrose.Revisions requested 24 August 204; Revisions received 21 October 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号