首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   56篇
  国内免费   55篇
  2023年   13篇
  2022年   11篇
  2021年   10篇
  2020年   26篇
  2019年   19篇
  2018年   20篇
  2017年   27篇
  2016年   25篇
  2015年   23篇
  2014年   38篇
  2013年   71篇
  2012年   21篇
  2011年   47篇
  2010年   25篇
  2009年   42篇
  2008年   37篇
  2007年   45篇
  2006年   47篇
  2005年   61篇
  2004年   48篇
  2003年   38篇
  2002年   43篇
  2001年   36篇
  2000年   35篇
  1999年   37篇
  1998年   24篇
  1997年   34篇
  1996年   37篇
  1995年   25篇
  1994年   31篇
  1993年   44篇
  1992年   45篇
  1991年   25篇
  1990年   34篇
  1989年   38篇
  1988年   35篇
  1987年   27篇
  1986年   41篇
  1985年   22篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   19篇
  1980年   23篇
  1979年   9篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1451条查询结果,搜索用时 265 毫秒
61.
Abstract A 7-kb piece of Escherichia coli DNA that contains five genes ( entA, C, G, B and E ) required for the biosynthesis of the iron transport molecule enterochelin was isolated. A restriction map was constructed and proteins specified by the E. coli DNA were identified in mini- and maxicell systems. Plasmids containing portions of the entACGBE DNA generated by BAL31 digestion or restriction enzyme treatment were constructed; complementation studies done with these indicated that the five genes constitute an operon. The approximate site of the promoter was determined and the product of entE was tentatively identified as an M r 63000 polypeptide.  相似文献   
62.
Single-site mutants of Pseudomonas aeruginosa that lack the ability aerobically to assimilate nitrate and nitrite as sole sources of nitrogen have been isolated. Twentyone of these have been subdivided into four groups by transductional analysis. Mutants in only one group, designated nis, lost assimilatory nitrite reductase activity. Mutants in the other three transductional groups, designated ntmA, ntmB, ntmC, display a pleiotropic phenotype: utilization of a number of nitrogen-containing compounds including nitrite as sole nitrogen sources is impaired. Assimilatory nitrite reductase was shown to be the major route by which hydroxylamine is reduced in aerobically-grown cells.In memoriam of Professor R. Y. Stanier  相似文献   
63.
In order to establish rapidly growing, friable cell cultures of Douglas-fir ( Pseudotsuga menziesii [Mirb. (Franco)], the effects of organic sources of nitrogen on growth were investigated. Of the nitrogen sources studied, including allantoin, allantoic acid, glutamine and glutamic acid, all were capable of increasing growth. Glutamine (50 m M ) produced the most marked increase in growth boosting dry weight production to a level of four times that of controls. Glutamine additions also eliminated the lag phase of growth and caused cells to become densely cytoplasmic. Results are discussed in relation to the pathway for assimilation of nitrogen.  相似文献   
64.
The role of de novo synthesis in the regulation of adenosine 5-phosphosulfate sulfotransferase activity by H2S inLemna minor L. was investigate using density labeling with15N applied as15NO 3 in the culture medium. While adenosine 5-phosphosulfate sulfotransferase activity was rapidly reduced by H2S and rapidly recovered upon removal of H2S, O-acetyl-L-serine sulfhydrylase (EC 4.2.99.8) did not show changes in extractable activity in response to H2S and could therefore be used as an internal marker enzyme for density labeling. The incorporation of15N into adenosine 5-phosphosulfate sulfotransferase was strongly reduced upon transfer of plants into a H2S-containing atmosphere. Half-maximal labeling was reached only after 70–80 h compared to 40–50 h in the control. After removal of H2S, adenosine 5-phosphosulfate sulfotransferase activity increased to the initial level within 20 h, and the enzyme reached halfmaximal labeling after only 15 h. The time course of the density increase of O-acetyl-L-serine sulfhydrylase was not affected very significantly by H2S. These results provide evidence that de novo synthesis of enzyme protein is involved in the regulation of adenosine 5-phosphosulfate sulfotransferase activity by H2S.Abbreviations APS adenosine 5-phosphosulfate - APSSTase adenosine 5-phosphosulfate sulfotransferase - BSA Bovine serum albumine - DTE dithioerythritol - OAS O-acetyl-L-serine - OASSase O-acetyl-L-serine sulfhydrylase - POPOP 1,4-bis-(5-phenyl-2-oxazolyl)-benzene - PPO 2,5-diphenyloxazole This is no. 9 in the series Regulation of Sulfate Assimilation in Plants  相似文献   
65.
Abstract. Cells of the blue-green alga Coccochloris peniocystis , grown at air levels of CO2, were exposed to [l4C]bicarbonate in the light for periods of 0.5 to 2.0 s followed by exposure to unlabelled bicarbonate for longer periods of time in the light. The kinetics of tracer movement during these pulse-chase experiments demonstrate that the principal mechanism of CO2 fixation in this alga is the C3-pathway although an appreciable amount of the C4 acid aspartate is found as one of the initial products of photosynthesis. Degradation of the labelled aspartate revealed that after 20 s of illumination, over 95% of the radioactivity was located in the β-carboxyl of this C4 acid. This alga possesses little, if any, capacity for either the enzymatic decarboxylation of C4 acids or the regeneration of phosphoenolpyruvate (PEP) from pyruvate mediated by the enzyme pyruvate, Pi dikinase. These data further demonstrate the lack of a functional C4-pathway in this alga.  相似文献   
66.
Rhodopseudomonas globiformis is able to grow on sulfate as sole source of sulfur, but only at concentrations below 1 mM. Good growth was observed with thiosulfate, cysteine or methionine as sulfur sources. Tetrathionate supported slow growth. Sulfide and sulfite were growth inhibitory. Growth inhibition by higher sulfate concentrations was overcome by the addition of O-acetylserine, which is known as derepressor of sulfate-assimilating enzymes, and by reduced glutathione. All enzymes of the sulfate assimilation pathway. ATP-sulfurylase, adenylylphosphate-sulfotransferase, thiosulfonate reductase and O-acetylserine sulfhydrylase are present in R. globiformis. Sulfate was taken up by the cells and the sulfur incorporated into the amino acids cysteine, methionine and homocysteine. It is concluded, that the failure of R. globiformis to grow on higher concentrations of sulfate is caused by disregulation of the sulfate assimilation pathway. Some preliminary evidence for this view is given in comparing the activities of some of the involved enzymes after growth on different sulfur sources and by examining the effect of O-acetylserine on these activities.Abbreviations DTE dl-dithioerythritol - APS adenosine 5-phosphosulfate, adenylyl sulfate - PAPS 3-phosphoadenosine 5-phosphosulfate, 3-phosphoadenylylsulfate  相似文献   
67.
An ammonia limited chemostat culture of Gymnodinium simplex (Lohm.) Kofoid & Swezy was perturbed with ammonia and fluctuations in the free intracellular amino acid pools were followed 80 min. The steady-state value of glutamate was 2.07 ± 10-15 mol cell-1 and of glutamine was 0.31 ± 10-15 mol cell-1. Five minutes after the perturbation, a substantial rise in glutamine was observed with a corresponding decrease in glutamate. This is considered a result of glutamine synthetase acting as the primary ammonia assimilating enzyme. The level of ammonia and the major free amino acids reached a maximum 10 min after the perturbation and then slowly decreased.  相似文献   
68.
Light and dark assimilation of nitrate in plants   总被引:6,自引:3,他引:3  
Abstract. Heterotrophic assimilation of nitrate in roots and leaves in darkness is closely linked with the oxidative pentose phosphate pathway. The supply of glucose-6-phosphate to roots and chloroplasts in leaves in darkness is essential for assimilation of nitrite into amino acids. When green leaves are exposed to light, the key enzyme, glucoses-phosphate dehydrogenase, is inhibited by reduction with thioredoxin. Hence the dark nitrate assimilatory pathway is inhibited under photoautotrophic conditions and replaced by regulatory reactions functioning in light. On account of direct photo-synthetic reduction of nitrite in chloroplasts and availability of excess NADH for nitrate reduclase, the rate of nitrate assimilation is extremely rapid in light. Under dark anaerobic conditions also nitrate is equally rapidly reduced to nitrite on account of abolition of competition for NADH between nitrate reductase and mitochondrial oxidation.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号