首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   56篇
  国内免费   55篇
  2023年   13篇
  2022年   11篇
  2021年   10篇
  2020年   26篇
  2019年   19篇
  2018年   20篇
  2017年   27篇
  2016年   25篇
  2015年   23篇
  2014年   38篇
  2013年   71篇
  2012年   21篇
  2011年   47篇
  2010年   25篇
  2009年   42篇
  2008年   37篇
  2007年   45篇
  2006年   47篇
  2005年   61篇
  2004年   48篇
  2003年   38篇
  2002年   43篇
  2001年   36篇
  2000年   35篇
  1999年   37篇
  1998年   24篇
  1997年   34篇
  1996年   37篇
  1995年   25篇
  1994年   31篇
  1993年   44篇
  1992年   45篇
  1991年   25篇
  1990年   34篇
  1989年   38篇
  1988年   35篇
  1987年   27篇
  1986年   41篇
  1985年   22篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   19篇
  1980年   23篇
  1979年   9篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1451条查询结果,搜索用时 15 毫秒
31.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   
32.
The assimilation of nitrate under dark-N2 and dark-O2 conditions in Zea mays leaf tissue was investigated using colourimetric and 15N techniques for the determination of organic and inorganic nitrogen. Studies using 15N indicated that nitrate was assimilated under dark conditions. However, the rate of nitrate assimilation in the dark was only 28% of the rate under non-saturating light conditions. No nitrite accumulated under dark aerobiosis, even though nitrate reduction occurred under these conditions. The pattern of nitrite accumulation in leaf tissue in response to dark-N2 conditions consisted of three phases: an initial lag phase, followed by a period of rapid nitrite accumulation and finally a phase during which the rate of nitrite accumulation declined. After a 1-h period of dark-anaerobiosis, both nitrate reduction and nitrite accumulation declined considerably. However, when O2 was supplied, nitrate reduction was stimulated and the accumulated nitrite was rapidly reduced. Anaerobic conditions stimulated nitrate reduction in leaf tissue after a period of dark-aerobic pretreatment.  相似文献   
33.
Vegetative plants of Poa pratensis L. cv. Holt (origin 69°N) raised in short days gave large and significant increases in plant dry weight, plant height and leaf area upon exposure to continuous light, compared with 8-h short days, at essentially identical daily inputs of radiant energy (8-h summer daylight ± low intensity extension). For example, by the fourth harvest (after 26, 34 and 46 days at 21, 15 and 9°C, respectively), the dry weights of plants in long days were 81, 163 and 195% greater than those of the corresponding short-day controls at the respective temperatures. Plant leaf areas in long days were between two and four times as large as control values by the end of the experiment. This was mainly due to increased leaf length caused by long-day stimulation of cell extension and division. However, the photoperiod did not affect the partitioning of assimilates amongst leaves, culms and stolons. Most of these effects could also be brought about by exogenous gibberellin application to plants in short days. However, in contrast to the effect of long days, gibberellin treatment also induced stem internode elongation even in these vegetative plants. Examination by standard growth analysis procedures revealed that the observed increases in relative growth rate were due primarily to increased net assimilation rate followed, several days later, by increases in leaf area ratio when newly-emerged leaves began to constitute a significant proportion of the leaf area. It is concluded that these reactions are of great adaptive significance for growth at the marginal temperatures prevailing at high latitudes.  相似文献   
34.
Soybean leaf urease: Comparison with seed urease   总被引:1,自引:0,他引:1  
Soybeans, Glycine max (L.) Merr., from ureides for transport of nitrogen from the root nodule to the shoot. The most direct routes for ureide utilization include the degradation of ureide-derived urea to NH3 and CO2. Ureolytic activity was found in leaf disks of soybean and exhbited optimal activity at pH 7 in the presence of a high concentration of urea (250 m M ). In vitro studies showed neither urea amidolyase nor urea dehydrogenase activity in soybean leaves and the ureolytic activity was characterized as urease. Several biochemical properties of soybean leaf urease were determined and compared to seed urease properties. Soybean leaf urease differed from that of seed in five ways: pH optima (5.25 and 8.75), apparent Km (0.8 m M ), no inhibition by hydroxyurea, faster electrophoretic mobility and no cross-reactivity with soybean seed urease antibodies. The data suggest that urease is the primary urea metabolizing enzyme present in soybean leaves. The properties of soybean leaf urease support the conclusion that a unique isozyme of urease is present in leaf tissue.  相似文献   
35.
Insertion of foreign DNA into Ti plasmid-derived vectors in Agrobacterium tumefaciens is currently the most frequently used strategy for generating transgenic plants in a wide variety of species. Limitations of the host range of Agrobacterium restrict its usefulness in many cases, particularly when dealing with monocotyledonous plants. The objective of this presentation is to briefly discuss the efficiency of the transformation process utilized by Agrobacterium tumefaciens , potential barriers to efficient transformation by Agrobacterium that result in limitation of its useful host range, and how an understanding of the successful Agrobacterium /plant cell interaction might lead to advances in a variety of DNA delivery methodologies.  相似文献   
36.
Short-term studies for comparing some primary metabolic and growth-responses to salt stress in seedlings of two maize genotypes differing in drought resistance were carried out under controlled conditions. Both genotypes revealed high yielding ability in favourable environments. Treatments: Control (Hoagland-Arnon No 1 solution) and salt stress (Hoagland-Arnon solution plus NaCl, s = –0.84MPa). It was found that in both genotypes the activity of the principal metabolic pathway supplying reduced nitrogen (15N) for the synthesis of amino acids and proteins as well as the assimulatory number (14CO2—assimilation relation rate per chlorophyll unit) were decreased under the effect of the stress. These effects were more marked in the resistant genotype. In this genotype the stress induced metabolic activity decline was accompanied by a corresonding reduction of the relative growth rate. Conversely, continuing growth, resulting probably from accumulation of solutes, was observed in the susceptible genotype.On the basis of these and other observations it is assumed that the resistant genotype manifests short-term energy saving stress reactions.  相似文献   
37.
38.
Plasmid DNA carrying either the nitrate reductase (NR) gene or the argininosuccinate lyase gene as selectable markers and the correspondingChlamydomonas reinhardtii mutants as recipient strains have been used to isolate regulatory mutants for nitrate assimilation by insertional mutagenesis. Identification of putative regulatory mutants was based on their chlorate sensitivity in the presence of ammonium. Among 8975 transformants, two mutants, N1 and T1, were obtained. Genetic characterization of these mutants indicated that they carry recessive mutations at two different loci, namedNrg1 andNrg2. The mutation in N1 was shown to be linked to the plasmid insertion. Two copies of the nitrate reductase plasmid, one of them truncated, were inserted in the N1 genome in inverse orientation. In addition to the chlorate sensitivity phenotype in the presence of ammonium, these mutants expressed NR, nitrite reductase and nitrate transport activities in ammonium-nitrate media. Kinetic constants for ammonium (14C-methylammonium) transport, as well as enzymatic activities related to the ammonium-regulated metabolic pathway for xanthine utilization, were not affected in these strains. The data strongly suggest thatNrg1 andNrg2 are regulatory genes which specifically mediate the negative control exerted by ammonium on the nitrate assimilation pathway inC. reinhardtii.  相似文献   
39.
Molecular genetics of sulfate assimilation in plants   总被引:4,自引:0,他引:4  
The sulfate assimilation pathway is the primary route by which higher plants obtain the sulfur necessary for growth. Sulfur is involved in a myriad of processes of central importance in metabolism. In the past few years much has been learned about this pathway and its regulation through analysis'of the genes encoding the enzymes and proteins that make up the sulfate assimilation pathway. The recent molecular genetic analysis builds on the biochemical and physiological groundwork of past studies. Further, gene analysis has provided the opportunity to compare directly the evolution of sulfate assimilation in plants and other organisms.,  相似文献   
40.
Ferredoxin-sulfite reductases (Fd-SiRs) [hydrogen-sulfide: ferredoxin oxidoreductase, EC 1.8.7.1] from leek leaves have been purified to homogeneity. The enzymes (SiR 1, SiR 2 and SiR 3) were separated by Mono Q chromatography. The collective molecular mass of the enzymes was estimated to be 65 kDa by gel filtration. In all three cases, subunit analysis by SDS-PAGE yielded a single protein band corresponding to a molecular mass of 64 kDa, indicating that the enzymes each exist as a monomer. In the oxidized forms, SiR 1, SiR 2 and SiR 3 all exhibited nearly identical absorption maxima at 279∼280, 389∼390, 588 and 714 nm, indicating that siroheme is involved in the catalysis of sulfite reduction. On enzymatic properties, SiR 1, SiR 2 and SiR 3 could only react with the physiological electron donor, feriedoxin. The enzymes exhibited different heat stabilities. The pH active curve obtained from SiR 2 was different from the others. Moreover, SiR 1 exhibited a lower Km value for ferredoxin than SiR 2. Although the N-terminal sequence was the same, the results of some enzymatic properties, amino acid analysis, and peptide mapping suggested the presence of the Fd-SiR isozymes in leek leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号