首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   56篇
  国内免费   55篇
  1451篇
  2023年   13篇
  2022年   11篇
  2021年   10篇
  2020年   26篇
  2019年   19篇
  2018年   20篇
  2017年   27篇
  2016年   25篇
  2015年   23篇
  2014年   38篇
  2013年   71篇
  2012年   21篇
  2011年   47篇
  2010年   25篇
  2009年   42篇
  2008年   37篇
  2007年   45篇
  2006年   47篇
  2005年   61篇
  2004年   48篇
  2003年   38篇
  2002年   43篇
  2001年   36篇
  2000年   35篇
  1999年   37篇
  1998年   24篇
  1997年   34篇
  1996年   37篇
  1995年   25篇
  1994年   31篇
  1993年   44篇
  1992年   45篇
  1991年   25篇
  1990年   34篇
  1989年   38篇
  1988年   35篇
  1987年   27篇
  1986年   41篇
  1985年   22篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   19篇
  1980年   23篇
  1979年   9篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1451条查询结果,搜索用时 15 毫秒
181.
Smith  Oney P.  Marinov  Anthony D.  Chan  Karen M.  Drew Ferrier  M. 《Hydrobiologia》2004,530(1-3):267-272
Glutamine synthetase (GS) catalyzes the addition of ammonium to glutamic acid to form glutamine and plays a crucial role in the nitrogen assimilation of the sea anemone Aiptasia pallida and its endosymbiotic algae. We describe the cDNA cloning and sequence analysis of GS mRNA from A. pallida based on polymerase chain reaction (PCR) technology that employed a combination of degenerate and A. pallida-specific primers. The sequenced cDNA approximates 1620 nucleotides and is characterized by an open reading frame of 1107 nucleotides that encodes a protein of 369 amino acid residues. Comparisons of the deduced sea anemone GS protein to a wide range of species demonstrated greatest amino acid sequence identity to sea urchin GS (66%) and least identity to green algae GS (51%). The sequenced cDNA can be used in future research to study GS gene expression in A. pallida.  相似文献   
182.
183.
184.
185.
Abstract: A growth analysis was conducted with 24 central European grass species in full daylight to test whether traits underlying interspecific variation in relative growth rate (RGR) are the same in full daylight as they are at lower light, and whether this depends on the ecological characteristics of the studied species, i.e., their requirements with respect to nutrient and light availability.
In contrast to studies with herbaceous species at lower light, net assimilation rate (NAR) contributed more than leaf area ratio (LAR) or specific leaf area (SLA) to interspecific variation in RGR. This was associated with a larger interspecific variation in NAR than found in experiments with lower light. Without the two most shade-tolerant species, however, the contribution of LAR and its components to interspecific variation in RGR was similar or even higher than that of NAR.
Leaf dry matter content correlated negatively with RGR and was the only component of LAR contributing in a similar manner to variation in LAR and RGR. There was a positive correlation between NAR and biomass allocation to roots, which may be a result of nutrient-limited growth. RGR correlated negatively with biomass allocation to leaves. Leaf thickness did not correlate with RGR, as the positive effect of thin leaves was counterbalanced by their lower NAR.
Low inherent RGR was associated with species from nutrient-poor or shady habitats. Different components constrained growth for these two groups of species, those from nutrient-poor habitats having high leaf dry matter content, while those from shady habitats had thin leaves with low NAR.  相似文献   
186.
187.
研究了捕自安徽宿州的成年雄性山地麻蜥 (Eremiasbrenchleyi)选择体温、热耐受性、温度对食物同化和运动表现的影响。结果显示 :①选择体温、临界高温和临界低温的平均值分别为 33 7、 43 6和 3 3℃。②环境温度在 2 6~ 38℃时 ,对山地麻蜥食物通过时间、摄食量、表观消化系数 (ADC)、同化效率 (AE)和运动表现有显著的影响 ;在 2 6~ 30℃时食物通过时间随温度升高而缩短 ,超过 30℃则随温度升高而延长 ;在 2 6和 2 8℃时 ,摄食量、ADC和AE均小于更高温度的对应值。③体温在 19~ 34℃ ,蜥蜴的疾跑速随体温上升而加快 ,31和 34℃时最快 ,超过 34℃后随体温升高而减慢 ;31和 34℃时的持续运动距离最长 ,超过 36℃后随体温升高而显著缩短 ,但体温 19~ 36℃蜥蜴的持续运动距离无显著差异 ;19~ 34℃蜥蜴的跑道停顿次数较少 ,无显著差异 ,超过 34℃后显著增加。  相似文献   
188.
189.
Ashraf  M.  Ahmad  Ashfaq  McNeilly  T. 《Photosynthetica》2001,39(3):389-394
Influence of supra-optimal concentrations of K on growth, water relations, and photosynthetic capacity in pearl millet under severe water deficit conditions was assessed in a glasshouse. Nineteen-days-old plants of two lines, ICMV-94133 and WCA-78, of Pennisetum glaucum (L.) R.Br. were subjected for 30 d to 235.0, 352.5, and 470.0 mg(K) kg–1(soil) and two water regimes (100 and 30 % field capacity). Increasing K supply did not alleviate the effect of water deficit on the growth of two lines of pearl millet since additional amount of K in the growth medium had no effect on shoot dry mass, relative growth rate, plant leaf area, net assimilation rate, or leaf area ratio, although there was significant effect of drought stress on these variables. Soil moisture had a significant effect on net photosynthetic rate (P N), transpiration rate, stomatal conductance, and water use efficiency of both pearl millet lines, but there was no significant effect of varying K supply on these variables. In WCA-78 an ameliorative effect of increasing supply of K on P N was observed under water deficit. Chlorophyll (Chl) a and b contents increased significantly in both lines with increase in K supply under well watered conditions, but under water deficit they increased only in ICMV-94133. Chl a/b ratios were reduced significantly in WCA-78 with increasing K supply under both watering regimes, but by contrast, in ICMV-94133 this variable was decreased only under water stress. Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Leaf pressure potential in both lines increased with increase in K supply under water stress. Contents of total free amino acids in the leaves of both pearl millet lines increased significantly with increase in K supply under water stress. Potassium supply had no effect on leaf soluble sugars or soluble proteins. Considerable osmotic adjustment occurred in pearl millet plants experiencing water deficit under high K supply.  相似文献   
190.
Over‐expression of glutamine synthetase (GS, EC 6.3.1.2), a key enzyme in nitrogen assimilation, may be a reasonable approach to enhance plant nitrogen use efficiency. In this work phenotypic and biochemical characterizations of young transgenic poplars showing ectopic expression of a pine cytosolic GS transgene in photosynthetic tissue (Gallardo et al., Planta 210, 19–26, 1999) are presented. Analysis of 22 independent transgenic lines in a 6 month greenhouse study indicated that expression of the pine GS transgene affects early vegetative growth and leaf morphology. In comparison with non‐transgenic controls, transgenic trees exhibited significantly greater numbers of nodes and leaves (12%), and higher average leaf length and width resulting in an increase in leaf area (25%). Leaf shape was not altered. Transgenic poplars also exhibited increased GS activity (66%), chlorophyll content (33%) and protein content (21%). Plant height was correlated with GS content in young leaves, suggesting that GS can be considered a marker for vegetative growth. Molecular and kinetic characterization of GS isoforms in leaves indicated that poplar GS isoforms are similar to their counterparts in herbaceous plants. A new GS isoenzyme that displayed molecular and kinetic characteristics corresponding to the octomeric pine cytosolic GS1 was identified in the photosynthetic tissues of transgenic poplar leaves. These results indicate that enhanced growth and alterations in biochemistry during early growth are the consequence of transgene expression and assembly of pine GS1 subunits into a new functional holoenzyme in the cytosol of photosynthetic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号