首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   56篇
  国内免费   55篇
  2023年   13篇
  2022年   11篇
  2021年   10篇
  2020年   26篇
  2019年   19篇
  2018年   20篇
  2017年   27篇
  2016年   25篇
  2015年   23篇
  2014年   38篇
  2013年   71篇
  2012年   21篇
  2011年   47篇
  2010年   25篇
  2009年   42篇
  2008年   37篇
  2007年   45篇
  2006年   47篇
  2005年   61篇
  2004年   48篇
  2003年   38篇
  2002年   43篇
  2001年   36篇
  2000年   35篇
  1999年   37篇
  1998年   24篇
  1997年   34篇
  1996年   37篇
  1995年   25篇
  1994年   31篇
  1993年   44篇
  1992年   45篇
  1991年   25篇
  1990年   34篇
  1989年   38篇
  1988年   35篇
  1987年   27篇
  1986年   41篇
  1985年   22篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   19篇
  1980年   23篇
  1979年   9篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1451条查询结果,搜索用时 31 毫秒
161.
Biological control of economically important crop pests is an important component of integrated pest management (IPM) strategies. Predator–prey energy relationships are critical to the success of biocontrol strategies; however, these relationships are often ignored in many IPM programs. In this study, the biocontrol potential of cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), by the ladybeetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) was estimated in terms of energy budgets calculated at 27 ± 1 °C. The energy equivalent of prey subjects (aphids) consumed was estimated from bomb calorimetry and partitioned into the energy associated with ingestion, assimilation, respiration, reproduction, and waste for each developmental stage of the lady beetle. The average assimilation efficiencies for larval and adult ladybeetles were 88.2 and 91.1%, respectively, whereas net ecological efficiencies were 17.6% for larvae and 2.6% for adults. Similarly, assimilation efficiencies of cotton aphids were 71.5 and 74.4% for nymphs and adults, respectively. Based on energy budget calculations, approximately 520, 3‐day‐old aphids and 5 356, 3‐day‐old aphids were estimated to be consumed by the ladybeetle larval stage and the female adult stage, respectively. These estimates were similar to the actual number of aphids consumed by the ladybeetles, based on actual counts. The current data demonstrate that P. japonica is an important natural enemy of the cotton aphid, and that predator–prey energy relationships can play a critical role in biocontrol strategies and IPM programs.  相似文献   
162.
Studies with seedlings of tropical rainforest trees ( Calophyllum longifolium Willd.; Tectona grandis L. f.) were designed to test whether high-light stress affects photosynthetic performance and growth. Seedlings were cultivated in pots at a field site in Central Panama (9 degrees N) and separated into two groups: (1) plants exposed to full solar radiation; (2) plants subjected to automatic neutral shading (48 %) whenever visible irradiance surpassed 1000, 1200, or 1600 micromol photons m-2 s-1. After 2-4 months, chlorophyll fluorescence (Fv/Fm ratio), photosynthetic net CO2 uptake, pigment composition, alpha-tocopherol content of leaves, and plant biomass accumulation were measured. Fully sun-exposed, compared to periodically shaded plants, experienced substantial high-light stress around midday, indicated by photoinhibition of photosystem II and depressed net CO2 uptake. Higher contents of xanthophyll cycle pigments, lutein, and alpha-tocopherol showed an enhancement of photoprotection in fully sun-exposed plants. However, in all experiments, the maximum capacity of net CO2 uptake and plant dry mass did not differ significantly between the two treatments. Thus, in these experiments, high-light stress did not impair productivity of the seedlings studied. Obviously, the continuously sun-exposed plants were capable of fully compensating for any potential costs associated with photoinhibition and repair of photosystem II, reduced CO2 assimilation, and processes of high-light acclimation.  相似文献   
163.
开花对两种杓兰光合作用和同化产物分配的影响   总被引:1,自引:0,他引:1  
对同一生境下黄花杓兰(Cypripedium flavum)和西藏杓兰(Cypripedium tibeticum)开花株与非开花株的气体交换、光系统Ⅱ实际光化学效率(φPSⅡ)和^14C分配进行了测定,目的在于了解开花对杓兰光合作用以及同化产物分配的影响。结果表明这两种杓兰开花均能通过提高电子传递速率来提升植株的光合作用。相对于黄花杓兰,西藏杓兰开花显著提高植株的呼吸速率,以致其最大净光合速率(Amax)的提升不显著。两种杓兰的花和地下部分(包括根状茎和芽)在同化产物分配上存在竞争关系,因而开花减少了同化产物向植株地下部分的分配。  相似文献   
164.
Spraying low concentrated (0.5–5.0 mM) solutions of NaHSO3 on Satsuma mandarin (Citrus unshiu Marc.) leaves resulted in enhancement (maximal about 15 % at 1 mM NaHSO3) of net photosynthetic rate (P N) for 6 d. The potential photochemical efficiency of photosystem 2 (PS2, Fv/Fm) and the quantum yield of PS2 electron transport (ΦPS2) were increased under strong photon flux density (PFD). The slow phase of millisecond delayed light emission (ms-DLE) was increased, showing that the transmembrane proton motive force related to photophosphorylation was enhanced. We also observed that low concentrations of NaHSO3 promoted the production of ATP in irradiated leaves. We suggest that the increase in P N in Satsuma mandarin leaves caused by low concentrations of NaHSO3 solution may have been due to the stimulation of photophosphorylation and, hence, the increase in photochemical efficiency through speeding-up of PS2 electron transport. Photoinhibition of photosynthesis in leaves was modified by NaHSO3 treatment under high PFD. Hence the increase in leaf dry mass seems to be associated with the mitigation of photoinhibition caused by strong PFD.  相似文献   
165.
A nas gene region from Rhodobacter capsulatus E1F1 containing the putative nasB gene for nitrite reductase was previously cloned. The recombinant His6-NasB protein overproduced in E. coli showed nitrite reductase activity in vitro with both reduced methyl viologen and NADH as electron donors. The apparent K m values for nitrite and NADH were 0.5 mM and 20 μM, respectively, at the pH and temperature optima (pH 9 and 30°C). The optical spectrum showed features that indicate the presence of FAD, iron-sulfur cluster and siroheme as prosthetic groups, and nitrite reductase activity was inhibited by sulfide and iron reagents. These results indicate that the phototrophic bacterium R. capsulatus E1F1 possesses an assimilatory NADH-nitrite reductase similar to that described in non-phototrophic organisms.  相似文献   
166.
The survival rate, metabolic activity, and ability for growth of microbial communities of Lake Baikal have been first studied after exposure to extremely low temperatures (freeze-thawing) for different lengths of time. It has been shown that short-term freezing (1–3 days) inhibits the growth and activity of microbial communities. The quantity of microorganisms increased after 7-and 15-day freezing. In the periods of maximums, the total number of microorganisms in the test samples was twice as high as in the control. It was established that after more prolonged freezing the microorganisms required more time after thawing to adapt to new conditions. In the variants with 7-and 15-day freezing, the activities of defrosted microbial communities were three or more times higher than in the control. The survival rate and activity of Baikal microorganisms after freeze-thawing confirms the fact that the Baikal microbial communities are highly resistant to this type of stress impact.  相似文献   
167.
It is widely believed that partial root drying (PRD) reduces water losses by transpiration without affecting yield. However, experimental work carried out to date does not always support this hypothesis. In many cases a PRD treatment has been compared to a full irrigated treatment, so doubt remains on whether the observed benefits correspond to the switching of irrigation or just to PRD being a deficit irrigation treatment. In addition, not always a PRD treatment has been found advantageous as compared to a companion regulated deficit irrigation (RDI) treatment. In this work we have compared the response of mature ‘Manzanilla‘ olive trees to a PRD and an RDI treatment in which about 50% of the crop evapotranspiration (ETc) was supplied daily by localised irrigation. We alternated irrigation in the PRD treatment every 2 weeks in 2003 and every 3 weeks in 2004. Measurements of stem water potential (Ψstem), stomatal conductance (g s) and net CO2 assimilation rate (A) were made in trees of both treatments, as well as in trees irrigated to 100% of ETc (Control trees) and in Rain-fed trees. Sap flow was also measured in different conductive organs of trees under both PRD and RDI treatments, to evaluate the influence of alternating irrigation on root water uptake and tree water consumption. We found small and random differences in Ψstem, g s and A, which gave no evidence of PRD causing a positive effect on the olive tree performance, as compared to RDI. Stomatal conductance decreased in PRD trees as compared to Control trees, but a similar decrease in g s was also recorded in the RDI trees. Sap flow measurements, which reflected water use throughout the irrigation period, also showed no evidence of g s being more reduced in PRD than in RDI trees. Daily water consumption was also similar in the trees of the deficit irrigation treatments, for most days, throughout the irrigation period. Alternating irrigation in PRD trees did not cause a change in either water taken up by main roots at each side of the trees, or in the sap flow of both trunk locations and main branches of each side. Results from this work, and from previous work conducted in this orchard, suggest that transpiration is restricted in trees under deficit irrigation, in which roots are left in drying soil when water is applied by localised irrigation, and that there is no need to alternate irrigation for achieving this effect. Section Editor: R. E. Munns  相似文献   
168.
If two previously isolated taxa mutually assimilate through hybridization and subsequent biparental introgression, and if their introgressed descendants have the same or higher fitness than their parents, then gene flow should result in the local extinction of parental taxa via replacement by hybrid derivatives. These dramatic events may occur rapidly, even in a few generations. Given the speed at which such extinction by hybridization may occur, it may be difficult to identify that the process has occurred. Thus, documented instances of extinction by hybridization are rare, and especially so for cases in which both parents are replaced by the hybrid lineage. Here we report morphological and allozyme evidence for the local extinction of two Raphanus species in California via replacement by their hybrid-derived descendants. The results from a greenhouse experiment demonstrate that California wild radishes have a specific combination of traits from their progenitors, and comparison of our results to that of an earlier report indicate that pure parental types are no longer present in the wild. Our results also show the hybrid-derived lineage has transgressive fruit weight compared to its parents. Allozyme analysis demonstrates that California wild radishes are derived from hybridization between the putative parental species. However, that analysis also demonstrates that California wild radish has now become an evolutionary entity separate from both of its parents. We suggest that the aggressive colonizing behavior of the hybrid-derived lineage probably results from a novel combination of parental traits, rather than genetic variability of the population per se.  相似文献   
169.
甲醛对大鼠脑影响的实验形态学研究   总被引:5,自引:1,他引:5  
24只Wistar大鼠,体重200~280g。6只为正常对照组,18只为实验性甲醛蒸气吸入组,每天定时吸入甲醛蒸气(200mg/m3)30分钟,分别在7、14和21天后处死,然后观察大脑皮层神经细胞的酶组织化学变化及超微结构变化。酶组织化学结果显示:SDH、Mg-MTase,ChE活性降低↓;ALP、ACP、MAO活性增强↑。超微结构变化可见(21天):皮层神经细胞线粒体嵴断裂、肿胀、空泡样变。表明甲醛对大脑皮层神经细胞的功能和结构均有影响。  相似文献   
170.
The development of stratified retinal cell architecture is highly conserved in all vertebrates, implying that a common fundamental molecular mechanism is involved in the generation of the organized retina. However, the detailed molecular mechanisms of retinal development are not fully understood. Here we have identified the Xenopus ortholog of prune and show that it is expressed in both differentiating and differentiated retinal domains during development. Interestingly, these spatial and temporal expression patterns coincide with the expression of prune binding partners, the NM23 family members. Overexpression of prune in retinal precursor cells significantly increases the ratio of Müller glial cells as observed by modulation of NM23 activity (Mochizuki et al., 2009). However, a mutated form of prune that has replacement of four aspartate (D) residues (D'Angelo et al., 2004), essential for phosphodiesterase activity, does not exhibit gliogenic activity. Our observations suggest that Xenopus prune may regulate Müller gliogenesis through phosphodiesterase-mediated regulation of NM23 family members.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号