首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   56篇
  国内免费   55篇
  2023年   13篇
  2022年   11篇
  2021年   10篇
  2020年   26篇
  2019年   19篇
  2018年   20篇
  2017年   27篇
  2016年   25篇
  2015年   23篇
  2014年   38篇
  2013年   71篇
  2012年   21篇
  2011年   47篇
  2010年   25篇
  2009年   42篇
  2008年   37篇
  2007年   45篇
  2006年   47篇
  2005年   61篇
  2004年   48篇
  2003年   38篇
  2002年   43篇
  2001年   36篇
  2000年   35篇
  1999年   37篇
  1998年   24篇
  1997年   34篇
  1996年   37篇
  1995年   25篇
  1994年   31篇
  1993年   44篇
  1992年   45篇
  1991年   25篇
  1990年   34篇
  1989年   38篇
  1988年   35篇
  1987年   27篇
  1986年   41篇
  1985年   22篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   19篇
  1980年   23篇
  1979年   9篇
  1978年   10篇
  1977年   4篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
排序方式: 共有1451条查询结果,搜索用时 15 毫秒
121.
A formate oxidase activity was found in the crude extract of a formaldehyde-resistant fungus isolated from soil. The fungus was classified and designated as Aspergillus nomius IRI013, which could grow on a medium containing up to 0.45% formaldehyde and consumed formaldehyde completely. The specific activity of formate oxidase in the extract of the fungus grown on formaldehyde was found to be considerably higher than that in the extracts of the fungus grown on formate and methanol. Formate oxidase from the fungus grown on formaldehyde was purified to homogeneity. The enzyme had a relative molecular mass of 100000 and was composed of two apparently identical subunits that had a relative molecular mass of 59000. The enzyme showed the highest activity using formate as substrate. Hydrogen peroxide was formed during the oxidation of formate. The Michaelis constant for formate was 15.9 mM; highest enzyme activity was found at pH 4.5-5.0. The enzyme activity was strongly inhibited by NaN(3), p-chloromercuribenzoate and HgCl(2).  相似文献   
122.
Physiological adaptations for nitrogen use efficiency in sorghum†   总被引:6,自引:0,他引:6  
Known high nitrogen utilization efficiency (NUE1, biomass per unit plant N) China lines of sorghum, China 17 and San Chi San, were compared with relatively low NUE1 U.S. lines, CK60 and Tx623, for both their physiological and biochemical adaptations to tolerate an imposed N stress in the greenhouse. Assimilation efficiency indices (ACi) were significantly greater for the China lines than the U.S. lines at both low and high soil nitrogen levels by about two-fold. Chlorophyll levels in leaves of high NUE1 lines were lower at both soil N treatments. Immunoblots of leaf extracts of sorghum subjected to N stress indicated reduced levels of both phosphoenolpyruvate carboxylase (PEPcase) and ribulose 1,5-bisphosphate carboxylase (Rubisco) while NADP-malic enzyme levels, in general, appear not to be affected. However, NUE1 China line, China 17, retained a significantly greater PEPcase activity than the less-NUE1 U.S. lines, and also the NUE1 China line San Chi San, when grown under N stress conditions. This suggests that PEPcase and enzymes associated with phosphoenolpyruvate synthesis, perhaps, are significant factors in maintaining relatively high photosynthesis under N stress. Carbon isotope ratios of leaves from sorghum genotypes, as indicated by 13C values, became less negative when sorghum plants were grown under N stress, but a genotypic variation either at a low or high N was not observed.  相似文献   
123.
Sulfate transporters present at the root surface facilitate uptake of sulfate from the environment. Here we report that uptake of sulfate at the outermost cell layers of Arabidopsis root is associated with the functions of highly and low-inducible sulfate transporters, Sultr1;1 and Sultr1;2, respectively. We have previously reported that Sultr1;1 is a high-affinity sulfate transporter expressed in root hairs, epidermal and cortical cells of Arabidopsis roots, and its expression is strongly upregulated in plants deprived of external sulfate. A novel sulfate transporter gene, Sultr1;2, identified on the BAC clone F28K19 of Arabidopsis, encoded a polypeptide of 653 amino acids that is 72.6% identical to Sultr1;1 and was able to restore sulfate uptake capacity of a yeast mutant lacking sulfate transporter genes (K(m) for sulfate = 6.9 +/- 1.0 microm). Transgenic Arabidopsis plants expressing the fusion gene construct of the Sultr1;2 promoter and green fluorescent protein (GFP) showed specific localization of GFP in the root hairs, epidermal and cortical cells of roots, and in the guard cells of leaves, suggesting that Sultr1;2 may co-localize with Sultr1;1 in the same cell layers at the root surface. Sultr1;1 mRNA was abundantly expressed under low-sulfur conditions (50-100 microm sulfate), whereas Sultr1;2 mRNA accumulated constitutively at high levels under a wide range of sulfur conditions (50-1500 microm sulfate), indicating that Sultr1;2 is less responsive to changes in sulfur conditions. Addition of selenate to the medium increased the level of Sultr1;1 mRNA in parallel with a decrease in the internal sulfate pool in roots. The level of Sultr1;2 mRNA was not influenced under these conditions. Antisense plants of Sultr1;1 showed reduced accumulation of sulfate in roots, particularly in plants treated with selenate, suggesting that the inducible transporter Sultr1;1 contributes to the uptake of sulfate under stressed conditions.  相似文献   
124.
The photosynthetic characteristics of four transgenic rice lines over-expressing rice NADP-malic enzyme (ME), and maize phosphoenolpyruvate carboxylase (PC), pyruvate,orthophosphate dikinase (PK), and PC+PK (CK) were investigated using outdoor-grown plants. Relative to untransformed wild-type (WT) rice, PC transgenic rice exhibited high PC activity (25-fold increase) and enhanced activity of carbonic anhydrase (more than two-fold increase), while the activity of ribulose-bisphosphate carboxylase/oxygenase (Rubisco) and its kinetic property were not significantly altered. The PC transgenic plants also showed a higher light intensity for saturation of photosynthesis, higher photosynthetic CO2 uptake rate and carboxylation efficiency, and slightly reduced CO2 compensation point. In addition, chlorophyll a fluorescence analysis indicates that PC transgenic plants are more tolerant to photo-oxidative stress, due to a higher capacity to quench excess light energy via photochemical and non-photochemical means. Furthermore, PC and CK transgenic rice produced 22–24% more grains than WT plants. Taken together, these results suggest that expression of maize C4 photosynthesis enzymes in rice, a C3 plant, can improve its photosynthetic capacity with enhanced tolerance to photo-oxidation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
125.
Marek  M.V.  Urban  O.  Šprtová  M.  Pokorný  R.  Rosová  Z.  Kulhavý  J. 《Photosynthetica》2002,40(2):259-267
The long-term impact of elevated concentration of CO2 on assimilation activity of sun-exposed (E) versus shaded (S) foliage was investigated in a Norway spruce stand [Picea abies (L.) Karst, age 14 years] after three years of cultivation in two domes with adjustable windows (DAW). One DAW was supplied with ambient air [AC, ca. 350 µmol(CO2) mol–1) and the second with elevated CO2 concentration [EC = AC plus 350 µmol(CO2) mol–1]. The pronounced vertical profile of the photosynthetic photon flux density (PPFD) led to the typical differentiation of the photosynthetic apparatus between the shaded and sun needles. Namely, photon-saturated values of maximal net photosynthetic rate (P Nmax) and apparent quantum yield () were significantly higher/lower for E-needles as compared with the S-ones. The prolonged exposure to EC was responsible for the apparent assimilatory activity stimulation observed mainly in deeply shaded needles. The degree of this stimulation decreases in the order: S-needles dense part > S-needles sparse part > E-needles dense part > E-needles sparse part. In exposed needles some signals on a manifestation of the acclimation depression of the photosynthetic activity were found. The long-term effect of EC was responsible for the decrease of nitrogen content of needles and for its smoother gradient between E- and S-needles. The obtained results indicate that the E- and S-foliage respond differently to the long-term impact of EC.  相似文献   
126.
The present study aimed to isolate, select, and evaluate bacterial isolates with potential for use as biological indicators for sterilization with glutaraldehyde and/or formaldehyde. A total of 340 local Bacillus isolates were screened for glutaraldehyde and/or formaldehyde resistance by determination of minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and extinction time and were compared with B. subtilis (var. niger) ATCC 9372, the biological indicator for ethylene oxide sterilization, as reference. Of these, 85 isolates had glutaraldehyde MICs of 0.5% or higher, while 29 had formaldehyde MICs of 0.04% or higher. Of the 29 resistant isolates, 15 had MBCs of 0.05% or more. Extinction times were used to evaluate the bactericidal/sporicidal activity of glutaraldehyde. Eight had inactivation times of more than 5 h in 2% glutaraldehyde (pH 8), whereas 12 had inactivation times of more than 3 h in l% formaldehyde, with one isolate in common. These 19 isolates were selected and evaluated as potential biological indicators for aldehydes by determination of the decimal reduction times (D values), compared with the reference strain. Eight glutaraldehyde-resistant isolates exhibited D values 2.0- to 3.5-fold higher than the reference strain (30 min.). Only five of 12 formaldehyde resistant isolates had D values higher than that of the reference strain. Using six resistant isolates, temperature coefficient values between 2.11 and 3.02 were obtained for 2% formaldehyde. Finally, 14 isolates were tested for potential pathogenicity and were identified to species level. All of the eight glutaraldehyde-resistant isolates, including the isolate with dual resistance, and three formaldehyde-resistant isolates were B. licheniformis, while two other formaldehyde-resistant isolates were B. cereus. Six of the selected B. licheniformis isolates are potential biological indicators for sterilization processes using aldehydes. Three can be suggested for glutaraldehyde only and three for both aldehydes. Electronic Publication  相似文献   
127.
At five European sites, differing in atmospheric Sinputs by a factor of 6, and differing in S isotope signatures ofthese inputs by up to 14 (CDT), we investigated thedirection and magnitude of an assimilation-related 34S shiftand the relationship between atmospheric deposition and Sretention in selected ecosystem compartments. Bulk precipitationand spruce throughfall were collected between 1994 and 1996 inthe Isle of Mull (Scotland), Connemara (Ireland), Thorne Moors(England), Rybárenská slat' and Oceán (both Czech Republic) andanalyzed for sulfate concentrations and 34S ratios. Eighteenreplicate samples per site of living Sphagnum collected inunforested peatlands and 18 samples of spruce forest floorcollected near each of the peatlands were also analyzed for Sconcentrations and 34S ratios. Assimilation of S was associatedwith a negative 34S shift. Plant tissues systematicallypreferred the light isotope 32S, on average by 2. There wasa strong positive correlation between the non-marine portion ofthe atmospheric S input and total S concentration in forest floorand Sphagnum, respectively (R = 0.97 and R = 0.85). Elevated Sinputs lead to higher S retention in these two organic-richcompartments of the ecosystem. It follows that equal emphasismust be placed on organic S as on adsorption/desorption ofinorganic sulfate when studying acidification reversal inecosystems. The sea-shore sites had rainfall enriched in theheavy isotope 34S due to an admixture of sea-spray. The inlandsites had low 34S reflecting 34S of sulfur emitted from localcoal-burning power stations. Sphagnum had always lower S contentsand higher 34S ratios compared to forest floor. The within-siterange of 34S ratios of Sphagnum and forest floor was wide (upto 12) suggesting that at least six replicate samples shouldbe taken when using 34S as a tracer.  相似文献   
128.
129.
130.
Imsande  John  Schmidt  Jean M. 《Plant and Soil》1998,202(1):41-47
During pod filling, a grain legume remobilizes vegetative nitrogen and sulfur to its developing fruit. This study was conducted to determine whether different nitrogen sources affected N and S assimilation and remobilization during pod filling. Well-nodulated plants fed 1.0 mM KNO3, 0.5 mM urea, or 2.5 mM urea assimilated 0%, 37%, or 114% more N, respectively, and 25%, 46%, or 56% more S, respectively, than did the average non-nodulated control plant fed 5.0 mM KNO3. Thus, N source during pod filling greatly affected both N and S assimilation. Depending upon N source, plant N concentration during pod filling decreased from 2.96% to between 1.36% and 1.82%. Non-nodulated control plants fed 5.0 mM KNO3 had the highest residual N at harvest. During the same treatments, plant S concentration decreased from 0.246% to a relatively uniform 0.215%. Thus, during pod filling, vegetative N was seemingly remobilized more efficiently (38–54%) than was S (13%). N source also affected seed yield and seed quality. Non-nodulated control plants fed 5.0 mM KNO3 produced the lowest yield (21.1 g seeds plant-1), whereas well nodulated plants fed 1.0 mM KNO3, 0.5 mM urea, or 2.5 mM urea produced yields of 26.2 g, 31.8 g, and 36.7 g seeds plant-1, respectively. Non-nodulated plants fed 2.5 mM urea yielded 28.6 g of seeds plant-1. Seed N concentrations of non-nodulated plants and nodulated plants fed 2.5 mM urea were high, 6.30% and 6.11% N, respectively, whereas their seed S concentrations were low, 0.348% and 0.330% S, respectively. N sources that produced both a relatively high seed yield and seed N concentration (i.e., a relatively high total seed N plant-1) produced a proportionately smaller increase in total seed sulfur. Consequently, seed quality, as judged solely by seed S concentration, was lowered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号