首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5237篇
  免费   885篇
  国内免费   2280篇
  2024年   59篇
  2023年   280篇
  2022年   257篇
  2021年   353篇
  2020年   359篇
  2019年   417篇
  2018年   326篇
  2017年   357篇
  2016年   372篇
  2015年   304篇
  2014年   316篇
  2013年   330篇
  2012年   259篇
  2011年   268篇
  2010年   268篇
  2009年   357篇
  2008年   347篇
  2007年   408篇
  2006年   367篇
  2005年   328篇
  2004年   272篇
  2003年   222篇
  2002年   200篇
  2001年   182篇
  2000年   137篇
  1999年   121篇
  1998年   140篇
  1997年   85篇
  1996年   99篇
  1995年   72篇
  1994年   66篇
  1993年   64篇
  1992年   69篇
  1991年   52篇
  1990年   58篇
  1989年   30篇
  1988年   36篇
  1987年   22篇
  1986年   25篇
  1985年   19篇
  1984年   12篇
  1983年   7篇
  1982年   14篇
  1981年   15篇
  1980年   9篇
  1978年   6篇
  1977年   9篇
  1976年   8篇
  1973年   4篇
  1958年   8篇
排序方式: 共有8402条查询结果,搜索用时 15 毫秒
211.
212.
For autogenic ecosystem engineers, body size is an aspect of individual performance that has direct connections to community structure; yet the complex morphology of these species can make it difficult to draw clear connections between the environment and performance. We combined laboratory experiments and field surveys to test the hypothesis that individual body size was determined by disparate localized physiological responses to environmental conditions across the complex thallus of the intertidal kelp Hedophyllum sessile, a canopy‐forming physical ecosystem engineer. We documented substantial (> 40%) declines in whole‐thallus photosynthetic potential (as Maximum Quantum Yield, MQY) as a consequence of emersion, which were related to greater than 10‐fold increases in intra‐thallus MQY variability (as Coefficient of Variation). In laboratory experiments, desiccation and high light levels during emersion led to lasting impairment of photosynthetic potential and an immediate > 25% reduction in area due to tissue contraction, which was followed by complete loss of structural integrity after three days of submersion. Tissue exposed to desiccation and high light during emersion had higher nitrogen concentrations and lower phlorotannin concentrations than tissue in control treatments (on average 1.36 and 0.1x controls, respectively), suggesting that conditions during emersion have the potential to affect food quality for consumers. Our data indicate that the complex thallus morphology of H. sessile may be critical to this kelp’s ability to persist in the intertidal zone despite the physiological challenges of emersion and encourage a more nuanced view of the concept of “sub‐lethal stress” on the scale of the whole individual.  相似文献   
213.
Use of fast-growing domesticated and/or genetically modified strains of fish is becoming increasingly common in aquaculture, increasing the likelihood of deliberate or accidental introductions into the wild. To date, their ecological impacts on ecosystems remain to be quantified. Here, using a controlled phenotype manipulation by implanting growth hormone in juvenile Atlantic salmon (Salmo salar), we found that growth-enhanced fish display changes in several phenotypic traits known to be important for ecosystem functioning, such as habitat use, morphology and excretion rate. Furthermore, these phenotypic changes were associated with significant impacts on the invertebrate community and key stream ecosystem functions such as primary production and leaf-litter decomposition. These findings provide novel evidence that introductions of growth-enhanced fish into the wild can affect the functioning of natural ecosystems and represent a form of intraspecific invasion. Consequently, environmental impact assessments of growth-enhanced organisms need to explicitly consider ecosystem-level effects.  相似文献   
214.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   
215.
216.
Environmental conditions can modify the intensity and sign of ecological interactions. The stress gradient hypothesis (SGH) predicts that facilitation becomes more important than competition under stressful conditions. To properly test this hypothesis, it is necessary to account for all (not a subset of) interactions occurring in the communities and consider that species do not interact at random but following a specific pattern. We aim to assess elevational changes in facilitation, in terms of species richness, frequency and intensity of the interaction as a function of the evolutionary relatedness between nurses and their associated species. We sampled nurse and their facilitated plant species in two 1000–2000 m. elevation gradients in Mediterranean Chile where low temperature imposes a mortality filter on seedlings. We first estimated the relative importance of facilitation as a mechanism adding new species to communities distributed along these gradients. We then tested whether the frequency and intensity of facilitation increases with elevation, taking into account the evolutionary relatedness of the nurse species and the facilitated species. We found that nurses increase the species richness of the community by up to 35%. Facilitative interactions are more frequent than competitive interactions (56% versus 44%) and facilitation intensity increased with elevation for interactions involving distantly related lineages. Our results highlight the importance of including an evolutionary dimension in the study of facilitation to have a clearer picture of the mechanisms enabling species to coexist and survive under stressful conditions. This knowledge is especially relevant to conserve vulnerable and threatened communities facing new climate scenarios, such as those located in Mediterranean-type ecosystems.  相似文献   
217.
Body size or mass is one of the main factors underlying food webs structure. A large number of evolutionary models have shown that indeed, the adaptive evolution of body size (or mass) can give rise to hierarchically organised trophic levels with complex between and within trophic interactions. However, these models generally make strong arbitrary assumptions on how traits evolve, casting doubts on their robustness. In particular, biomass conversion efficiency is always considered independent of the predator and prey size, which contradicts with the literature. In this paper, we propose a general model encompassing most previous models which allows to show that relaxing arbitrary assumptions gives rise to unrealistic food webs. We then show that considering biomass conversion efficiency dependent on species size is certainly key for food webs adaptive evolution because realistic food webs can evolve, making obsolete the need of arbitrary constraints on traits' evolution. We finally conclude that, on the one hand, ecologists should pay attention to how biomass flows into food webs in models. On the other hand, we question more generally the robustness of evolutionary models for the study of food webs.  相似文献   
218.
In arctic and boreal ecosystems, ground bryophytes play an important role in regulating carbon (C) exchange between vast belowground C stores and the atmosphere. Climate is changing particularly fast in these high-latitude regions, but it is unclear how altered precipitation regimes will affect C dynamics in the bryosphere (i.e. the ground moss layer including senesced moss, litter and associated biota) and the closely associated upper humus layer, and how these effects will vary across contrasting environmental conditions. Here, we set up a greenhouse experiment in which mesocosms were assembled containing samples of the bryosphere, dominated by the feather moss Hylocomium splendens, and the upper humus layer, that were collected from across a boreal forest chronosequence in northern Sweden which varies strongly in nutrient availability, productivity and soil biota. We tested the effect of variation in precipitation volume and frequency on CO2 exchange and dissolved organic carbon (DOC) export, and on moss growth. As expected, reduced precipitation volume and frequency lowered net CO2 efflux, DOC export and moss growth. However, by regulating moisture, the lower bryosphere and humus layers often mediated how precipitation volume and frequency interacted to drive C dynamics. For example, less frequent precipitation reduced moss growth only when precipitation volume was low. When volume was high, high moisture content of the humus layer helped avoid moss desiccation. Variation in precipitation regime affected C cycling consistently in samples collected across the chronosequence, despite large environmental variation along the sequence. This suggests that the bryosphere exerts a strong buffering effect on environmental variation at the forest floor, which leads to similar responses of C cycling to external perturbations across highly contrasting ecosystems. As such, our study indicates that projected increases in droughts and ground evapotranspiration in high-latitude regions resulting from climate change will consistently reduce C losses from moss-dominated ecosystems.  相似文献   
219.
当代生态系统科学研究更加关注区域生态环境及生态系统状态变化的监测、评估、预测、预警及生态环境可持续管理。在深入理解陆地生态系统的要素、过程、功能、格局及其相互作用机理基础上,发展生态系统定量化描述方法和数值模拟技术,集成构建大陆尺度的“多过程耦合-多技术集成-多目标应用”的陆地生态系统数值模拟器已成为生态系统与全球变化及其资源、环境和灾害效应科学研究的重要科技任务。本研究围绕宏观生态系统模拟分析方法问题,在回顾陆地生态系统模型研究现状和发展趋势的基础上,深入讨论开发大尺度陆地生态系统动态变化和空间变异及其资源环境效应模拟系统的理念,以及模拟系统的功能定位、结构设计等基本问题,为构造中国陆地生态系统数值模拟器提供参考。  相似文献   
220.
生态系统服务供给和需求研究评述及框架体系构建   总被引:1,自引:0,他引:1  
易丹  肖善才  韩逸  欧名豪 《应用生态学报》2021,32(11):3942-3952
生态系统服务供给和需求联系着自然生态系统与社会经济系统,对生态系统服务供给和需求的研究有助于加强生态系统管理和实现资源优化配置,从而保障区域生态安全与社会经济可持续发展。本文在系统梳理国内外相关研究的基础上,对生态系统服务供给和需求的概念内涵、评估方法和实践应用等方面进行全面综述。从理论发展的角度看,虽然目前已取得较为丰富的研究成果,但是现有研究仍较为分散,缺乏统一的生态系统服务供需研究框架体系。鉴于此,本文在对生态系统服务供给和需求的研究范畴进行拓展的基础上,按照“理论-方法-实践”相统一的研究脉络,构建了“定性-定位-定量-定策”的生态系统服务供给和需求研究框架体系,最后提出未来研究应围绕“重点关注生态系统服务供给和需求的空间转移规律、加强生态系统服务供给和需求的定量方法研究、深化生态系统服务供给和需求应用管理实践和建立生态系统服务供给和需求应用评价机制”等方面展开,以期促进生态系统服务供给和需求的理论与实践研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号