全文获取类型
收费全文 | 5248篇 |
免费 | 867篇 |
国内免费 | 2316篇 |
专业分类
8431篇 |
出版年
2024年 | 72篇 |
2023年 | 284篇 |
2022年 | 262篇 |
2021年 | 354篇 |
2020年 | 365篇 |
2019年 | 417篇 |
2018年 | 326篇 |
2017年 | 357篇 |
2016年 | 372篇 |
2015年 | 304篇 |
2014年 | 316篇 |
2013年 | 330篇 |
2012年 | 259篇 |
2011年 | 268篇 |
2010年 | 268篇 |
2009年 | 357篇 |
2008年 | 347篇 |
2007年 | 408篇 |
2006年 | 367篇 |
2005年 | 328篇 |
2004年 | 272篇 |
2003年 | 222篇 |
2002年 | 200篇 |
2001年 | 182篇 |
2000年 | 137篇 |
1999年 | 121篇 |
1998年 | 140篇 |
1997年 | 85篇 |
1996年 | 99篇 |
1995年 | 72篇 |
1994年 | 66篇 |
1993年 | 64篇 |
1992年 | 69篇 |
1991年 | 52篇 |
1990年 | 58篇 |
1989年 | 30篇 |
1988年 | 36篇 |
1987年 | 22篇 |
1986年 | 25篇 |
1985年 | 19篇 |
1984年 | 12篇 |
1983年 | 7篇 |
1982年 | 14篇 |
1981年 | 15篇 |
1980年 | 9篇 |
1978年 | 6篇 |
1977年 | 9篇 |
1976年 | 8篇 |
1973年 | 4篇 |
1958年 | 8篇 |
排序方式: 共有8431条查询结果,搜索用时 15 毫秒
181.
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below‐ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above‐ and below‐ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above‐ and below‐ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above‐ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession‐specific accumulated soil communities, by root exudates, or by accession‐specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning. 相似文献
182.
Intensive weed control and plot preparation practices have become a critical and integral part of productive beech forest management in Turkey’s coastal Black Sea region (BSR). This study was conducted in an eastern beech forest of 100+ year old in the BSR to evaluate ecosystem effects of three different experimental Rhododendron ponticum understory control methods with a randomised block design, including manual grubbing, foliar and cut stump spraying with imazapyr (Arsenal) and foliar and cut stump spraying with triclopyr (Garlon). Untreated vegetation plots served as controls. Evaluation of these treatments included their effects on understory and forest floor biomass and nutrients (C, N, P, S, K, Ca and Mg) and effects on soils, including bulk density, pH, soil nutrients (C, N, P and S), exchangeable cations (K, Ca and Mg) and soil cation exchange capacity (CEC). Grubbing and imazapyr treatments had greatly reduced the amount of understory biomass 5 years after application (P = 0.002). Triclopyr treatment also had a major effect on understory vegetation control, but by 5 years later, about 10% of the rhododendron originally present on these plots had gradually re‐sprouted and partially covered the plots. Five years after woody vegetation control treatments, at the 0‐ to 20‐cm depth, treatments did not appear to affect soil bulk density, pH and CEC. For the upper 20‐cm soil depth, the exchangeable soil K concentration at the 10‐ to 20‐cm depth on triclopyr‐treated plots was 33% higher than on grubbing plots, and it was twice that of imazapyr application plots. Imazapyr plots had almost 11 times more dead organic matter on the forest floor than there was on grubbing plots. Forest floor C concentrations on imazapyr plots were 26 and 14% greater than those on grubbing and triclopyr plots, respectively. Total ecosystem (forest floor + understory + soil exchangeable) Ca content was 50% higher on imazapyr plots than that on triclopyr plots, while the ecosystem K pool on imazapyr treatment plots was 27% lower than that on triclopyr plots. Herbicides can be used as an alternative for achieving some forest management objectives when other vegetation control methods are not feasible or economical. It is recommended that vegetation control not be used on steep slopes because of greater risk of soil erosion. There may be benefits in encouraging slash disposal by fire after imazapyr treatments, thus removing recalcitrant understory residues left on the forest floor and releasing the essential nutrients within them. 相似文献
183.
J Fanta 《Ecological Engineering》1997,8(4):289-297
There is a need for a consistent forest restoration strategy for the `Black Triangle', Central Europe. In the past 50 years, forests in this area have been heavily affected by industrial pollution. Recently, the amount of pollutants has decreased. This means that effective forest restoration programmes can be started. Forest decline must be seen as an ecological disturbance which cannot be solved by applying technical measures only. An ecosystem approach to forest restoration must be introduced into restoration policy and management. Basic principles and working methods of such an approach are briefly described and proposals are made for forest restoration policy, management and research in the area. 相似文献
184.
185.
Richard B Sherley Robert JM Crawford Bruce M Dyer Jessica Kemper Azwianewi B Makhado Makhudu Masotla 《Ostrich》2019,90(4):335-346
The Cape Gannet Morus capensis is one of several seabird species endemic to the Benguela upwelling ecosystem (BUS) but whose population has recently decreased, leading to an unfavourable IUCN Red List assessment. Application of ‘JARA’ (‘Just Another Red-List Assessment,’ a Bayesian state-space tool used for IUCN Red List assessments) to updated information on the areas occupied by Cape Gannets and the nest densities of breeding birds at their six colonies, suggested that the species should be classified as Vulnerable. However, the rate of decrease of Cape Gannets in their most-recent generation exceeded that of the previous generation, primarily as a result of large decreases at Bird Island, Lambert’s Bay, and Malgas Island, off South Africa’s west coast (the western part of their range). Since the 1960s, there has been an ongoing redistribution of the species from northwest to southeast around southern Africa, and ~70% of the population now occurs on the south coast of South Africa, at Bird Island in Algoa Bay, on the eastern border of the BUS. Recruitment rather than adult survival may be limiting the present population; however, information on the seabird’s demographic parameters and mortality in fisheries is lacking for colonies in the northern part of the BUS. Presently, major threats to Cape Gannet include: substantially decreased availability of their preferred prey in the west; heavy mortalities of eggs, chicks and fledglings at and around colonies, inflicted by Cape Fur Seals Arctocephalus pusillus and other seabirds; substantial disturbance at colonies caused by Cape Fur Seals attacking adult gannets ashore; oiling; and disease. 相似文献
186.
AM真菌在草原生态系统中的功能 总被引:3,自引:0,他引:3
AM真菌是土壤生态系统中重要的微生物类群,能与陆地生态系统中80%以上的高等植物建立共生体系。目前,AM真菌在维持草原生态系统稳定性中的功能已经成为生态学研究的热点问题之一。基于此,从植物个体、种群、群落和生态系统等不同层次探究AM真菌在维持植物群落多样性和草原生态系统稳定性中的功能。分析发现在个体水平上,AM真菌对宿主植物具有促生效应、抑制效应或中性效应。在种群水平上,分析AM真菌对不同宿主植物吸收土壤矿质营养的分配和调控策略,围绕构成草原植被的两大组成成分:牧草和有毒植物,论述AM真菌对植物种群增长和衰败的调控机制,并从草原植物群落的物种多样性和稳定性角度,探讨AM真菌与植物群落之间的相关性。在生态系统水平上,围绕AM真菌对草原生态系统的演替和退化草原的修复等展开论述,以期为利用AM真菌开展草原生态系统保护和恢复治理提供理论依据,并对草原菌根生态学领域未来的研究进行展望。 相似文献
187.
188.
Carbon storage and fluxes in ponderosa pine forests at different developmental stages 总被引:12,自引:0,他引:12
B.E. Law P.E. Thornton † J. Irvine P.M. Anthoni‡ S. Van Tuyl 《Global Change Biology》2001,7(7):755-777
We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome‐BGC simulations of fluxes. The young forest (Y site) was previously an old‐growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m?2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m?2 year?1), and it was largely from soils at both sites (77% of Re). The biological data show that above‐ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m?2 year?1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15‐km swath in the region, ANPP ranged from 76 g C m?2 year?1 at the Y site to 236 g C m?2 year?1 (overall mean 158 ± 14 g C m?2 year?1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome‐BGC model suggest that disturbance type and frequency, time since disturbance, age‐dependent changes in below‐ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget‐based observations to within ± 20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand‐replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10–20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long‐term pools (biomass and soils) in addition to short‐term fluxes has important implications for management of forests in the Pacific North‐west for carbon sequestration. 相似文献
189.
Environmental consequences of deltamethrin residues in cattle feces in an African agricultural landscape 下载免费PDF全文
Bryony Sands Neludo Mgidiswa Casper Nyamukondiwa Richard Wall 《Ecology and evolution》2018,8(5):2938-2946
Pyrethroid insecticides are widely used to control ectoparasites of livestock, particularly ticks and biting flies. Their use in African livestock systems is increasing, driven by the need to increase productivity and local food security. However, insecticide residues present in the dung after treatment are toxic to dung‐inhabiting insects. In a semiarid agricultural habitat in Botswana, dung beetle adult mortality, brood ball production, and larval survival were compared between untreated cattle dung and cattle dung spiked with deltamethrin, to give concentrations of 0.01, 0.1, 0.5, or 1 ppm. Cattle dung‐baited pitfall traps were used to measure repellent effects of deltamethrin in dung on Scarabaeidae. Dung decomposition rate was also examined. There was significantly increased mortality of adult dung beetles colonizing pats that contained deltamethrin compared to insecticide‐free pats. Brood ball production was significantly reduced at concentrations of 1 ppm; larval survival was significantly reduced in dung containing 0.1 ppm deltamethrin and above. There was no difference in the number of Scarabaeidae attracted to dung containing any of the deltamethrin concentrations. Dung decomposition was significantly reduced even at the lowest concentration (0.01 ppm) compared to insecticide‐free dung. The widespread use of deltamethrin in African agricultural ecosystems is a significant cause for concern; sustained use is likely to damage dung beetle populations and their provision of environmentally and economically important ecosystem services. Contaminated dung buried by paracoprid (tunneling) beetles may retain insecticidal effects, with impacts on developing larvae below ground. Lethal and sublethal effects on entire dung beetle (Scarabaeidae) communities could impair ecosystem function in agricultural landscapes. 相似文献
190.
Proteome analysis of early somatic embryogenesis in Picea glauca 总被引:3,自引:0,他引:3
Lippert D Zhuang J Ralph S Ellis DE Gilbert M Olafson R Ritland K Ellis B Douglas CJ Bohlmann J 《Proteomics》2005,5(2):461-473
Forestry is a valuable natural resource for many countries. Rapid production of large quantities of genetically improved and uniform seedlings for restocking harvested lands is a key component of sustainable forest management programs. Clonal propagation through somatic embryogenesis has the potential to meet this need in conifers and can offer the added benefit of ensuring consistent seedling quality. Although in commercial use, mass production of conifers through somatic embryogenesis is relatively new and there are numerous biological unknowns regarding this complex developmental pathway. To aid in unravelling the embryo developmental process, two-dimensional electrophoresis was employed to quantitatively assess the expression levels of proteins across four stages of somatic embryo maturation in white spruce (0, 7, 21 and 35 days post abscisic acid treatment). Forty-eight differentially expressed proteins have been identified, which display a significant change in abundance as early as day 7 of embryo development. These proteins are involved in a variety of cellular processes, many of which have not previously been associated with embryo development. The identification of these proteins was greatly assisted by the availability of a substantial expressed sequence tag (EST) resource developed for white, sitka and interior spruce. The combined use of these spruce ESTs in conjunction with GenBank accessions for other plants improved the rate of protein identification from 38% to 62% when compared with GenBank alone using automated, high-throughput techniques. This underscores the utility of EST resources in a proteomic study of any species for which a genome sequence is unavailable. 相似文献