首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   53篇
  国内免费   14篇
  2023年   17篇
  2022年   25篇
  2021年   16篇
  2020年   31篇
  2019年   36篇
  2018年   32篇
  2017年   40篇
  2016年   28篇
  2015年   25篇
  2014年   64篇
  2013年   65篇
  2012年   47篇
  2011年   53篇
  2010年   38篇
  2009年   25篇
  2008年   29篇
  2007年   34篇
  2006年   17篇
  2005年   21篇
  2004年   18篇
  2003年   13篇
  2002年   14篇
  2001年   10篇
  2000年   5篇
  1999年   14篇
  1998年   4篇
  1997年   4篇
  1996年   13篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   9篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有773条查询结果,搜索用时 31 毫秒
61.

Background and Aims

Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation.

Methods

In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits.

Key Results

Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection.

Conclusions

Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.  相似文献   
62.
Premise of the study: The glacial cycles of the Quaternary did not impact Australia in the same way as Europe and North America. Here we investigate the history of population isolation, species differentiation, and hybridization in the southeastern Australian landscape, using five species of Lomatia (Proteaceae). We use a chloroplast DNA phylogeography to assess chloroplast haplotype (chlorotype) sharing among these species and whether species with shared distributions have been affected by shared biogeographic barriers. • Methods: We used six chloroplast DNA simple sequence repeats (cpSSR) across five species of Lomatia, sampled across their entire distributional range in southeastern Australia. Resulting size data were combined, presented as a network, and visualized on a map. Biogeographical barriers were tested using AMOVA. To explore hypotheses of chlorotype origin, we converted the network into a cladogram and reconciled with all possible species trees using parsimony-based tree mapping. • Key results: Some chlorotypes were shared across multiple species of Lomatia in the study, including between morphologically differentiated species. Chlorotypes were either widespread in distribution or geographically restricted to specific regions. Biogeographical structure was identified across the range of Lomatia. The most parsimonious reconciled tree incorporated horizontal transfer of chlorotypes. • Conclusions: Lomatia shows evidence of both incomplete lineage sorting and extensive hybridization between co-occurring species. Although the species in the study appear to have responded to a number of biogeographic barriers to varying degrees, our findings identified the Hunter River Valley as the most important long-term biogeographic barrier for the genus in southeastern Australia.  相似文献   
63.
Cationic antimicrobial peptides (CAPs) occur as important innate immunity agents in many organisms, including humans, and offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to membrane lysis and eventually cell death. In this work, we studied the biophysical and microbiological characteristics of designed CAPs varying in hydrophobicity levels and charge distributions by a variety of biophysical and biochemical approaches, including in-tandem atomic force microscopy, attenuated total reflection-FTIR, CD spectroscopy, and SDS-PAGE. Peptide structural properties were correlated with their membrane-disruptive abilities and antimicrobial activities. In bacterial lipid model membranes, a time-dependent increase in aggregated β-strand-type structure in CAPs with relatively high hydrophobicity (such as KKKKKKALFALWLAFLA-NH(2)) was essentially absent in CAPs with lower hydrophobicity (such as KKKKKKAAFAAWAAFAA-NH(2)). Redistribution of positive charges by placing three Lys residues at both termini while maintaining identical sequences minimized self-aggregation above the dimer level. Peptides containing four Leu residues were destructive to mammalian model membranes, whereas those with corresponding Ala residues were not. This finding was mirrored in hemolysis studies in human erythrocytes, where Ala-only peptides displayed virtually no hemolysis up to 320 μM, but the four-Leu peptides induced 40-80% hemolysis at the same concentration range. All peptides studied displayed strong antimicrobial activity against Pseudomonas aeruginosa (minimum inhibitory concentrations of 4-32 μM). The overall findings suggest optimum routes to balancing peptide hydrophobicity and charge distribution that allow efficient penetration and disruption of the bacterial membranes without damage to mammalian (host) membranes.  相似文献   
64.
Muscle elasticity strongly relies on the mechanical anchoring of the giant protein titin to both the sarcomere M-band and the Z-disk. Such strong attachment ensures the reversible dynamics of the stretching-relaxing cycles determining the muscle passive elasticity. Similarly, the design of biomaterials with enhanced elastic function requires experimental strategies able to secure the constituent molecules to avoid mechanical failure. Here we show that an engineered titin-mimicking protein is able to spontaneously dimerize in solution. Our observations reveal that the titin Z1Z2 domains are key to induce dimerization over a long-range distance in proteins that would otherwise remain in their monomeric form. Using single molecule force spectroscopy, we measure the threshold force that triggers the noncovalent transition from protein dimer to monomer, occurring at ~700 piconewtons. Such extremely high mechanical stability is likely to be a natural protective mechanism that guarantees muscle integrity. We propose a simple molecular model to understand the force-induced dimer-to-monomer transition based on the geometric distribution of forces occurring within a dimeric protein under mechanical tension.  相似文献   
65.
Voltage-gated K(+) channels composed of Kv7.2 and Kv7.3 are the predominant contributors to the M-current, which plays a key role in controlling neuronal activity. Various lines of evidence have indicated that Kv7.2 and Kv7.3 form a heteromeric channel. However, the subunit stoichiometry and arrangement within this putative heteromer are so far unknown. Here, we have addressed this question using atomic force microscopy imaging of complexes between isolated Kv7.2/Kv7.3 channels and antibodies to epitope tags on the two subunits, Myc on Kv7.2 and HA on Kv7.3. Initially, tsA 201 cells were transiently transfected with equal amounts of cDNA for the two subunits. The heteromer was isolated through binding of either tag to immunoaffinity beads and then decorated with antibodies to the other tag. In both cases, the distribution of angles between pairs of bound antibodies had two peaks, at around 90° and around 180°, and in both cases the 90° peak was about double the size of the 180° peak. These results indicate that the Kv7.2/Kv7.3 heteromer generated by cells expressing approximately equal amounts of the two subunits assembles as a tetramer with a predominantly 2:2 subunit stoichiometry and with a random subunit arrangement. When the DNA ratio for the two subunits was varied, copurification experiments indicated that the subunit stoichiometry was variable and not fixed at 2:2. Hence, there are no constraints on either the subunit stoichiometry or the subunit arrangement.  相似文献   
66.
Food sharing among nonkin-one of the most fascinating cooperative behaviors in humans-is not widespread in nonhuman primates. Over the past few years, a large body of work has investigated the contexts in which primates cooperate and share food with unrelated individuals. This work has successfully demonstrated that species-specific differences in temperament constrain the extent to which food sharing emerges in experimental situations, with despotic species being less likely to share food than tolerant ones. However, little experimental work has examined the contexts that promote food sharing and cooperation within a species. Here, we examine whether one salient reproductive context-the consortship dyad-can allow the necessary social tolerance for co-feeding to emerge in an extremely despotic species, the rhesus macaque (Macaca mulatta). We gave naturally formed male-female rhesus macaque pairs access to a monopolizable food site in the free-ranging population at Cayo Santiago, Puerto Rico. Using this method, we were able to show that tolerated co-feeding between unrelated adults can take place in this despotic species. Specifically, our results show that consort pairs co-fed at the experimental food site more than nonconsort control pairs, leading females to obtain more food in this context. These results suggest that co-feeding is possible even in the most despotic of primate species, but perhaps only in contexts that specifically promote the necessary social tolerance. Researchers might profit from exploring whether other kinds of within-species contexts could also generate cooperative behaviors.  相似文献   
67.
The sigma-1 receptor (Sig1R) is up-regulated in many human tumors and plays a role in the control of cancer cell proliferation and invasiveness. At the molecular level, the Sig1R modulates the activity of various ion channels, apparently through a direct interaction. We have previously shown using atomic force microscopy imaging that the Sig1R binds to the trimeric acid-sensing ion channel 1A with 3-fold symmetry. Here, we investigated the interaction between the Sig1R and the Nav1.5 voltage-gated Na+ channel, which has also been implicated in promoting the invasiveness of cancer cells. We show that the Sig1R and Nav1.5 can be co-isolated from co-transfected cells, consistent with an intimate association between the two proteins. Atomic force microscopy imaging of the co-isolated proteins revealed complexes in which Nav1.5 was decorated by Sig1Rs. Frequency distributions of angles between pairs of bound Sig1Rs had two peaks, at ∼90° and ∼180°, and the 90° peak was about twice the size of the 180° peak. These results demonstrate that the Sig1R binds to Nav1.5 with 4-fold symmetry. Hence, each set of six transmembrane regions in Nav1.5 likely constitutes a Sig1R binding site, suggesting that the Sig1R interacts with the transmembrane regions of its partners. Interestingly, two known Sig1R ligands, haloperidol and (+)-pentazocine, disrupted the Nav1.5/Sig1R interaction both in vitro and in living cells. Finally, we show that endogenously expressed Sig1R and Nav1.5 also functionally interact.  相似文献   
68.
The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). The interaction energies involved in binding of such compounds to the transporter are unknown. Here, we used atomic force microscopy (AFM) to probe single molecular interactions between the serotonin transporter and MFZ2-12 (a potent cocaine analog) in living CHOK1 cells. For the AFM measurements, MFZ2-12 was immobilized on AFM tips by using a heterobifunctional cross-linker. By varying the pulling velocity in force distance cycles drug-transporter complexes were ruptured at different force loadings allowing for mapping of the interaction energy landscape. We derived chemical rate constants from these recordings and compared them with those inferred from inhibition of transport and ligand binding: koff values were in good agreement with those derived from uptake experiments; in contrast, the kon values were scaled down when determined by AFM. Our observations generated new insights into the energy landscape of the interaction between SERT and inhibitors. They thus provide a useful framework for molecular dynamics simulations by exploring the range of forces and energies that operate during the binding reaction.  相似文献   
69.
Modern humans possess a highly derived thumb that is robust and long relative to the other digits, with enhanced pollical musculature compared with extant apes. Researchers have hypothesized that this anatomy was initially selected for in early Homo in part to withstand high forces acting on the thumb during hard hammer percussion when producing stone tools. However, data are lacking on loads experienced during stone tool production and the distribution of these loads across the hand.Here we report the first quantitative data on manual normal forces (N) and pressures (kPa) acting on the hand during Oldowan stone tool production, captured at 200 Hz. Data were collected from six experienced subjects replicating Oldowan bifacial choppers. Our data do not support hypotheses asserting that the thumb experiences relatively high loads when making Oldowan stone tools. Peak normal force, pressure, impulse, and the pressure/time integral are significantly lower on the thumb than on digits 2 and/or digit 3 in every subject. Our findings call into question hypotheses linking modern human thumb robusticity specifically to load resistance during stone tool production.  相似文献   
70.
To study the role of coactivation in strength and force modulation in the elbow joint of children and adolescents with cerebral palsy (CP), we investigated the affected and contralateral arm of 21 persons (age 8-18) with spastic unilateral CP in three tasks: maximal voluntary isokinetic concentric contraction and passive isokinetic movement during elbow flexion and extension, and sub-maximal isometric force tracing during elbow flexion. Elbow flexion-extension torque and surface electromyography (EMG) of the biceps brachii (BB) and triceps brachii (TB) muscles were recorded. During the maximal contractions, the affected arm was weaker, had decreased agonist and similar antagonist EMG amplitudes, and thus increased antagonist co-activation (% of maximal activity as agonist) during both elbow flexion and extension, with higher coactivation levels of the TB than the BB. During passive elbow extension, the BB of the affected arm showed increased resistance torque and indication of reflex, and thus spastic, activity. No difference between the two arms was found in the ability to modulate force, despite increased TB coactivation in the affected arm. The results indicate that coactivation plays a minor role in muscle weakness in CP, and does not limit force modulation. Moreover, spasticity seems particularly to increase coactivation in the muscle antagonistic to the spastic one, possibly in order to increase stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号