首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1489篇
  免费   77篇
  国内免费   42篇
  1608篇
  2023年   9篇
  2022年   24篇
  2021年   16篇
  2020年   27篇
  2019年   34篇
  2018年   51篇
  2017年   51篇
  2016年   27篇
  2015年   38篇
  2014年   94篇
  2013年   135篇
  2012年   53篇
  2011年   93篇
  2010年   73篇
  2009年   80篇
  2008年   81篇
  2007年   100篇
  2006年   63篇
  2005年   59篇
  2004年   60篇
  2003年   47篇
  2002年   37篇
  2001年   37篇
  2000年   20篇
  1999年   23篇
  1998年   18篇
  1997年   19篇
  1996年   24篇
  1995年   12篇
  1994年   14篇
  1993年   12篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   7篇
  1987年   8篇
  1986年   4篇
  1985年   18篇
  1984年   15篇
  1983年   22篇
  1982年   21篇
  1981年   9篇
  1980年   10篇
  1979年   14篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1973年   3篇
  1972年   2篇
排序方式: 共有1608条查询结果,搜索用时 15 毫秒
21.
The SNARE protein syntaxin 1A (Syn1A) is known to inhibit delayed rectifier K(+) channels of the K(v)1 and K(v)2 families with heterogeneous effects on their gating properties. In this study, we explored whether Syn1A could directly modulate K(v)4.3, a rapidly inactivating K(v) channel with important roles in neuroendocrine cells and cardiac myocytes. Immunoprecipitation studies in HEK293 cells coexpressing Syn1A and K(v)4.3 revealed a direct interaction with increased trafficking to the plasma membrane without a change in channel synthesis. Paradoxically, Syn1A inhibited K(v)4.3 current density. In particular, Syn1A produced a left-shift in steady-state inactivation of K(v)4.3 without affecting either voltage dependence of activation or gating kinetics, a pattern distinct from other K(v) channels. Combined with our previous reports, our results further verify the notion that the mechanisms involved in Syn1A-K(v) interactions vary significantly between K(v) channels, thus providing a wide scope for Syn1A modulation of exocytosis and membrane excitability.  相似文献   
22.
In all organisms the fourth catalytic step of the pyrimidine biosynthesis is driven by the flavoenzyme dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11). Cytosolic DHODH of the established model organism Saccharomyces cerevisiae catalyses the oxidation of dihydroorotate to orotate and the reduction of fumarate to succinate. Here, we investigate the structure and mechanism of DHODH from S. cerevisiae and show that the recombinant ScDHODH exists as a homodimeric enzyme in vitro. Inhibition of ScDHODH by the reaction product was observed and kinetic studies disclosed affinity for orotate (K(ic)=7.7 microM; K(ic) is the competitive inhibition constant). The binding constant for orotate was measured through comparison of UV-visible spectra of the bound and unbound recombinant enzyme. The midpoint reduction potential of DHODH-bound flavine mononucleotide determined from analysis of spectral changes was -242 mV (vs. NHE) under anaerobic conditions. A search for alternative electron acceptors revealed that homologues such as mesaconate can be used as electron acceptors.  相似文献   
23.
Maintaining physical connections between the nucleus and the cytoskeleton is important for many cellular processes that require coordinated movement and positioning of the nucleus. Nucleo-cytoskeletal coupling is also necessary to transmit extracellular mechanical stimuli across the cytoskeleton to the nucleus, where they may initiate mechanotransduction events. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, formed by the interaction of nesprins and SUN proteins at the nuclear envelope, can bind to nuclear and cytoskeletal elements; however, its functional importance in transmitting intracellular forces has never been directly tested. This question is particularly relevant since recent findings have linked nesprin mutations to muscular dystrophy and dilated cardiomyopathy. Using biophysical assays to assess intracellular force transmission and associated cellular functions, we identified the LINC complex as a critical component for nucleo-cytoskeletal force transmission. Disruption of the LINC complex caused impaired propagation of intracellular forces and disturbed organization of the perinuclear actin and intermediate filament networks. Although mechanically induced activation of mechanosensitive genes was normal (suggesting that nuclear deformation is not required for mechanotransduction signaling) cells exhibited other severe functional defects after LINC complex disruption; nuclear positioning and cell polarization were impaired in migrating cells and in cells plated on micropatterned substrates, and cell migration speed and persistence time were significantly reduced. Taken together, our findings suggest that the LINC complex is critical for nucleo-cytoskeletal force transmission and that LINC complex disruption can result in defects in cellular structure and function that may contribute to the development of muscular dystrophies and cardiomyopathies.  相似文献   
24.
Mechanical forces govern physiological processes in all living organisms. Many cellular forces, for example, those generated in cyclic conformational changes of biological machines, have repetitive components. In apparent contrast, little is known about how dynamic protein structures respond to periodic mechanical information. Ubiquitin is a small protein found in all eukaryotes. We developed molecular dynamics simulations to unfold single and multimeric ubiquitins with periodic forces. By using a coarse-grained representation, we were able to model forces with periods about 2 orders of magnitude longer than the protein's relaxation time. We found that even a moderate periodic force weakened the protein and shifted its unfolding pathways in a frequency- and amplitude-dependent manner. A complex dynamic response with secondary structure refolding and an increasing importance of local interactions was revealed. Importantly, repetitive forces with broadly distributed frequencies elicited very similar molecular responses compared to fixed-frequency forces. When testing the influence of pulling geometry on ubiquitin's mechanical stability, it was found that the linkage involved in the mechanical degradation of cellular proteins renders the protein remarkably insensitive to periodic forces. We also devised a complementary kinetic energy landscape model that traces these observations and explains periodic-force, single-molecule measurements. In turn, this analytical model is capable of predicting dynamic protein responses. These results provide new insights into ubiquitin mechanics and a potential mechanical role during protein degradation, as well as first frameworks for dynamic protein stability and the modeling of repetitive mechanical processes.  相似文献   
25.
Little is known about Mg induced Ca deficiency in alkaline conditions, and the relationship between Mg induced Ca deficiency and Na induced Ca deficiency. Dilute nutrient solutions (dominated by Mg) were used to investigate the effect of Ca activity ratio (CAR) on the growth of mungbeans (Vigna radiata (L.) Wilczek cv. Emerald). At pH 9.0, root growth was reduced below a critical CAR of 0.050 (corresponding to 90% relative root length). Root growth was found to be limited more in Mg solutions than had been previously observed for Na solutions. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for both Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present.  相似文献   
26.
Continuous monitoring of glucose and sugar sensing plays a vital role in diabetes control. The drawbacks of the present enzyme‐based sugar sensors have encouraged the investigation into alternate approaches to design new sensors. The popularity of fluorescence sensors is due to their ability to bind reversibly to compounds containing diol. In this study we investigated the binding ability of phenyl boronic acid P1 for monosaccharides and disaccharides (sugars) in aqueous medium at physiological pH 7.4 using steady‐state fluorescence and absorbance. P1 fluorescence was quenched due to formation of esters with sugars. Absorbance and fluorescence measurements led to results that indicated that the sugars studied could be ordered in terms of their affinity to P1, as stated: sucrose > lactose > galactose > xylose > ribose > arabinose. In each case, the slope of modified Stern–Volmer plots was nearly 1, indicating the presence of only a single binding site in boronic acids for sugars. Docking studies were carried out using Schrodinger Maestro v.11.2 software. The binding affinity of phenyl boronic acid P1 with periplasmic protein (PDB ID 2IPM and 2IPL) was estimated using GlideScore.  相似文献   
27.
胡妍  陈玲 《生物技术进展》2021,11(6):795-801
生物膜干涉(biolayer interferometry,BLI)技术可对抗体与抗原的相互作用进行亲和力、动力学的全面分析。在抗体克隆筛选、动力学常数测定中对链霉亲和素(streptavidin,SA)生物传感器的需求量较大,但目前鲜有关于SA传感器重复利用的报道。基于BLI技术、再生SA生物传感器建立一种使用再生后的传感器检测PDL1抗体与PDL1抗原亲和力的方法。通过将生物素化的PDL1抗原偶联至SA生物传感器上,再与单链抗体、双价单链抗体、完整抗体和双特异性抗体这4类PDL1抗体结合,计算抗原抗体的亲和力常数,利用甘氨酸(10 mmol·L-1,pH 1.7)再生SA传感器,再次进行分子间相互作用力分析。结果显示,重复性相对标准偏差(relative standard deviation,RSD)均值为6.87%,批间重复性RSD为0.82%,稳定性RSD均值为6.13%,说明运用甘氨酸再生后的SA生物传感器测分子间的亲和力数据可靠、重现性好、稳定性高,再生后的传感器可继续用于本样品的实时、无标记的抗原抗体相互作用力分析。BLI技术可节省检测成本,为SA传感器的重复利用提供理论依据。  相似文献   
28.
Force exertion against different mechanical environments can affect motor control strategies in order to account for the altered environmental dynamics and to maintain the ability to produce force. Here, we investigated the change of muscular activity of selected muscles of the lower extremities while the participants interacted with an external mechanical device of variable stability. Twenty-five healthy participants exerted force against the device by performing a unilateral ballistic leg extension task under 1 or 3 degrees of freedom (DoF). Directional force data and electromyographic responses from four leg muscles (TA, VM, GM, PL) were recorded. Muscle responses to the altered experimental conditions were analyzed by calculating time to peak electrical activity (TTP), peak electrical activity (PEA), slope of EMG-signal and muscle activity. It was found that neuromuscular system adjustments to the task are expressed mainly by temporal (TTP) rather than amplitude (PEA) scaling of muscular activity. This change was specific for the investigated muscles. Moreover, a selective increase of muscle activity occurred while increasing external DoF. This scheme was accompanied by a significant reduction of applicable force against the device in the unstable 3 DoF condition. The findings suggest that orchestration of movement control is linked to environmental dynamics also affecting the ability to produce force under dynamic conditions. The adjustments of the neuromuscular system are rather temporal in nature being consistent with the impulse timing hypothesis of motor control.  相似文献   
29.
《Free radical research》2013,47(5):255-263
Thioctic acid (TA) and its reduced form dihydrolipoic acid (DHLA) have recently gained somc recognition as useful biological antioxidants. In particular, the ability of DHLA to inhibit lipid peroxidation has been reported. In the present study, the effects of TA and DHLA on reactive oxygen species (ROS) generated in the aqueous phase have been investigated. Xanthine plus xanthine oxidase-generated superoxide radicals (O2), detected by electron spin resonance spectroscopy (ESR) using DMPO as a spin trap. were eliminated by DHLA but not by TA. The sulhydryl content of DHLA, measured using Ellman's reagent decreased subsequent to the incubation with xanthine plus xanthine oxidase confirming the interaction between DHLA and O2-. An increase of hydrogen peroxide concentration accompanied the reaction between DHLA and O2x, suggesting the reduction of O2- by DHLA. Competition of O2- with epinephrine allowed us to estimate a second order kinetic constant of the reaction between O2- and DHLA, which was found to be a 3.3 × 105 M-1 s-1. On the other hand, the DMPO signal of hydroxyl radicals (HO ·) generated by Fenton's reagent were eliminated by both TA and DHLA. Inhibition of the Fenton reaction by TA was confirmed by a chemiluminescence measurement using luminol as a probe for HO ·. There was no electron transfer from Fe2+ to TA or from DHLA to Fe3 + detected by measuring the Fe2+ -phenanthroline complex. DHLA did not potentiate the DMPO signal of HO · indicating no prooxidant activity of DHLA. These results suggest that both TA and DHLA possess antioxidant properties. In particular. DHLA is very effective as shown by its dual capability by eliminating both O2-; and HO ·.  相似文献   
30.
Litter decay is a significant part of carbon budget. Due to strong environmental control, the changes in the environment may drastically influence the litter decay rates. Litter decomposition of eight dry tropical woody species, viz. Shorea robusta, Buchanania lanzan, Diospyros melanoxylon, Lagerstroemia parviflora, Lannea coromandelica, Terminalia tomentosa, Holarrhena antidysenterica and Lantana camara was studied to document the effect of intra-annual changes in the environment. Litter decomposition was monitored at monthly intervals at five sites using litter bag technique over an annual cycle in a dry tropical deciduous forest of Vindhyan highland, India. Weight loss differed among species and through months, and ranged from 15.38% in L. camara at Kotwa site in January to 30.72% in T. tomentosa at Hathinala site in August. Peak weight loss occurred in August and averaged 46.2% across species and sites. Nitrogen and phosphorus mineralization rates also varied significantly from species to species. T. tomentosa having higher nitrogen content and lower C/N ratio than other species exhibited faster weight loss. Nitrogen and phosphorus contents of litter showed significant positive correlation with weight loss. C/N ratio was negatively related to decay constant, and the weight loss was positively related to the soil surface temperature as well as soil moisture content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号