首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2034篇
  免费   40篇
  国内免费   126篇
  2023年   17篇
  2022年   42篇
  2021年   51篇
  2020年   34篇
  2019年   48篇
  2018年   52篇
  2017年   60篇
  2016年   42篇
  2015年   40篇
  2014年   77篇
  2013年   93篇
  2012年   56篇
  2011年   110篇
  2010年   68篇
  2009年   130篇
  2008年   145篇
  2007年   135篇
  2006年   94篇
  2005年   88篇
  2004年   99篇
  2003年   65篇
  2002年   47篇
  2001年   30篇
  2000年   29篇
  1999年   40篇
  1998年   43篇
  1997年   41篇
  1996年   39篇
  1995年   36篇
  1994年   23篇
  1993年   38篇
  1992年   33篇
  1991年   27篇
  1990年   30篇
  1989年   28篇
  1988年   33篇
  1987年   24篇
  1986年   19篇
  1985年   14篇
  1984年   17篇
  1983年   8篇
  1982年   14篇
  1981年   10篇
  1980年   7篇
  1979年   3篇
  1977年   4篇
  1976年   4篇
  1974年   2篇
  1972年   2篇
  1965年   2篇
排序方式: 共有2200条查询结果,搜索用时 15 毫秒
81.
《MABS-AUSTIN》2013,5(4):799-802
The commercial pipeline of monoclonal antibodies is highly dynamic, with a multitude of transitions occurring during the year as product candidates advance through the clinical phases and onto the market. The data presented here add to that provided in the extensive “Antibodies to watch in 2014” report published in the January/February 2014 issue of mAbs. Recent phase transition data suggest that 2014 may be a banner year for first approvals of antibody therapeutics. As of May 2014, three products, ramucirumab (Cyramza®), siltuximab (Sylvant®) and vedolizumab (EntyvioTM), had been granted first approvals in the United States, and four additional antibody therapeutics (secukinumab, dinutuximab, nivolumab, pembrolizumab) are undergoing regulatory review in either the US or the European Union. Other notable events include the start of first Phase 3 studies for seven antibody therapeutics (dupilumab, SA237, etrolizumab, MPDL3280A, bavituximab, clivatuzumab tetraxetan, blinatumomab). Relevant data for these product candidates are summarized, and metrics for antibody therapeutics development are discussed.  相似文献   
82.
83.

Background

Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency.

Methods

Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2 g/kg) 1 h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology.

Results

Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60 pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48 h for USPIO and MPIO, respectively.

Conclusions

Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles.

General significance

Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver.  相似文献   
84.
85.
Lipid oxidation is one of the main chemical degradations occurring in biological systems and leads to the formation of compounds that are related to aging and various chronic and degenerative diseases. The extent of oxidation will depend on the presence of antioxidants/pro-oxidants, the unsaturation degree of fatty acids, and environmental conditions. Lipid oxidation can also affect other molecules that have double bonds in their chemical structures, such as cholesterol. Cholesterol oxidation products (COPs) have been studied in depth, because of their negative and controversial biological effects. The formation of COPs can be particularly favored in the presence of light and photosensitizers, since they generate excited singlet oxygen that rapidly reacts with the double bond by a non radical mechanism and without any induction period. The present review intends to provide an overall and critical picture of cholesterol photosensitized oxidation in food and biological systems, and its possible impact on human health and well-being.  相似文献   
86.
The 98 amino acid (a.a.) N-terminus of the 126 a.a. atrial natriuretic factor prohormone contains two natriuretic and vasodilatory peptides consisting of a.a. 1–30 (proANF 1–30) and a.a. 31–67 (proANF 31–67). The N-terminus and C-terminus (a.a. 99–126, i.e., ANF–also a vasodilatory peptide) circulate normally in humans with a circadian peak at 04:00 h in plasma. To determine if the N-terminus and C-terminus of the ANF prohormone are present in urine and possibly have a circadian variation in urine, six healthy volunteers had urine samples hourly while awake and every 3 h during sleep for five consecutive days obtained for radioimmunoassay. The sleep-awake pattern was varied so that after 2 days of normal sleep (supine)-awake (upright) positions, these volunteers were supine from 15:00 h on the third day until 10:00 h of the fourth day. They were then upright until 19:00 h that day when they became supine again until 02:30 h, and then were upright until 10:00 h of day 5. Three radioimmunoassays that immunologically recognize (a) the whole N-terminus (i.e., amino acids 1–98), (b) the midportion of the N-terminus (amino acids 31–67), and (c) the C-terminus of the ANF prohormone were utilized. ProANF 1–98, proANF 31–67, and the ANF radioimmunoassays each detected their respective peptides in urine. A circadian peak for each of these peptides was detected at 04:00 to 05:00 h whether the person was supine or upright during the night, which were significantly (p < 0.001) higher than their concentrations in the afternoon of the previous days. Assuming a supine position during the day caused a significant (p < 0.01) two- to threefold increase in these peptides in the urine. Food intake also increased the concentrations of proANF 1–98, proANF 31–67, and ANF in urine (p < 0.001). Fluid intake when abstaining from food throughout the day lowered the concentration of these peptides in the urine. It was concluded that there is a circadian rhythm in both the N-terminus and C-terminus of the ANF prohormone excretion into urine with a peak at 04:00 h irrespective of posture, but that both posture and food and fluid intake throughout the day significantly influence the excretion of these peptides into the urine, with supine posture and food increasing their concentrations in the urine while fluid intake decreases their concentrations in the urine.  相似文献   
87.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
88.
Prolonged food deprivation is known to cause a fall in the core body temperature of homeotherms. In various species of small birds and mammals (body mass up to 2–3 kg), it has been shown that starvation-induced hypothermia is modulated by the circadian system, in the sense that hypothermia is observed primarily during the inactive phase of the daily activity cycle (i.e., during the night for diurnal animals and during the day for nocturnal animals), whereas relatively normal temperatures are recorded during the active phase. To investigate whether this modulation occurs also in larger animals, we investigated the effects of 4d food deprivation on the body temperature rhythm of goats and sheep (body mass 30–40 kg). In goats, the body temperature rhythm was found to have a mean level of 39.0°C with a mean daily range of excursion of 0.42°C. The daily oscillation in body temperature persisted during the first day of fasting, but the rhythm was drastically damped, if not eliminated, over the next 3 d as body temperature descended from the baseline level of 39.0 to 38.2°C. In sheep, the rhythm was found to have a mean level of 39.3°C with a mean daily range of excursion of 0.34°C. The daily oscillation in body temperature persisted through the 4 d of food deprivation, even though the mean level of body temperature gradually fell. Temperature fell more during the third and fourth nights than during the third and fourth days. Thus, circadian modulation of starvation-induced hypothermia was observed in sheep but not in goats.  相似文献   
89.
Light is the main entraining signal of the central circadian clock, which drives circadian organization of activity. When food is made available during only certain parts of the day, it can entrain the clock in the liver without changing the phase of the central circadian clock. Although a hallmark of food entrainment is a behavioral anticipation of food availability, the extent of behavioral alterations in response to food availability has not been fully characterized. The authors have investigated interactions between light and temporal food availability in the timing of activity in the common vole. Temporally restricted food availability enhanced or attenuated re-entrainment to a phase advance in light entrainment when it was shifted together with the light or remained at the same time of day, respectively. When light-entrained behavior was challenged with temporal food availability cycles with a different period, two distinct activity components were observed. More so, the present data indicate that in the presence of cycles of different period length of food and light, an activity component emerged that appeared to be driven by a free-running (light-entrainable) clock. Because the authors have previously shown that in the common vole altering activity through running-wheel availability can alter the effectiveness of food availability to entrain the clock in the liver, the authors included running-wheel availability as a parameter that alters the circadian/ultradian balance in activity. In the current protocols, running-wheel availability enhanced the entraining potential of both light and food availability in a differential way. The data presented here show that in the vole activity is a complex of individually driven components and that this activity is, itself, an important modulator of the effectiveness of entraining signals such as light and food. (Author correspondence: )  相似文献   
90.
Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527 mA/m2 and 230 mW/m2 in the anode area, respectively, at operation organic loading (OLR) of 0.364 g COD/l.d. At OLR of 0.182 g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475 V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号