首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1424篇
  免费   54篇
  国内免费   94篇
  2023年   18篇
  2022年   21篇
  2021年   22篇
  2020年   34篇
  2019年   36篇
  2018年   36篇
  2017年   27篇
  2016年   35篇
  2015年   36篇
  2014年   90篇
  2013年   95篇
  2012年   56篇
  2011年   81篇
  2010年   51篇
  2009年   89篇
  2008年   85篇
  2007年   84篇
  2006年   62篇
  2005年   71篇
  2004年   58篇
  2003年   62篇
  2002年   50篇
  2001年   38篇
  2000年   31篇
  1999年   35篇
  1998年   28篇
  1997年   15篇
  1996年   12篇
  1995年   21篇
  1994年   24篇
  1993年   20篇
  1992年   16篇
  1991年   9篇
  1990年   17篇
  1989年   8篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   15篇
  1983年   16篇
  1982年   13篇
  1981年   12篇
  1980年   8篇
  1979年   4篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1572条查询结果,搜索用时 211 毫秒
51.
Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post‐symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early‐warning sentinels potentially have tremendous utility as wide‐area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis‐acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time‐course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields.  相似文献   
52.
Immortal cells require a mechanism of telomere length control in order to divide infinitely. One mechanism is telomerase, an enzyme that compensates the loss of telomeric DNA. The second mechanism is the alternative lengthening of telomeres (ALT) pathway. In ALT pathway cells, homologous recombination between telomeric DNA is the mechanism by which telomere homeostasis is achieved. We developed a novel homologous recombination reporter system that is able to measure inter-telomeric recombination in a sensitive manner. We asked the fundamental question if homologous recombination between different telomeres is present in telomerase-positive cells. In this in vitro study, we showed that homologous recombination between telomeres is detectable in ALT cells with the same frequency as in cells that utilize the telomerase pathway. We further described an ALT cell clone that showed peaks of recombination which were not detected in telomerase-positive clones. In telomerase-positive cells the frequency of inter-telomeric recombination was not increased by shortened telomeres or by a fragile telomere phenotype induced with aphidicolin. ALT cells, in contrast, responded to aphidicolin with an increase in the frequency of recombination. Our results indicate that inter-telomeric recombination is present in both pathways of telomere length control, but the factors that increase recombination are different in ALT and telomerase-positive cells.  相似文献   
53.
To stain C. elegans with antibodies, the relatively impermeable cuticle must be bypassed by chemical or mechanical methods. "Freeze-cracking" is one method used to physically pull the cuticle from nematodes by compressing nematodes between two adherent slides, freezing them, and pulling the slides apart. Freeze-cracking provides a simple and rapid way to gain access to the tissues without chemical treatment and can be used with a variety of fixatives. However, it leads to the loss of many of the specimens and the required compression mechanically distorts the sample. Practice is required to maximize recovery of samples with good morphology. Freeze-cracking can be optimized for specific fixation conditions, recovery of samples, or low non-specific staining, but not for all parameters at once. For antibodies that require very hard fixation conditions and tolerate the chemical treatments needed to chemically permeabilize the cuticle, treatment of intact nematodes in solution may be preferred. If the antibody requires a lighter fix or if the optimum fixation conditions are unknown, freeze-cracking provides a very useful way to rapidly assay the antibody and can yield specific subcellular and cellular localization information for the antigen of interest.  相似文献   
54.
Rapid, efficient, and robust quantitative analyses of dynamic apoptotic events are essential in a high-throughput screening workflow. Currently used methods have several bottlenecks, specifically, limitations in available fluorophores for downstream assays and misinterpretation of statistical image data analysis. In this study, we developed cytochrome-C (Cyt-C) and caspase-3/-8 reporter cell lines using lung (PC9) and breast (T47D) cancer cells, and characterized them from the response to apoptotic stimuli. In these two reporter cell lines, the spatial fluorescent signal translocation patterns served as reporters of activations of apoptotic events, such as Cyt-C release and caspase-3/-8 activation. We also developed a vision-based, tunable, automated algorithm in MATLAB to implement the robust and accurate analysis of signal translocation in single or multiple cells. Construction of the reporter cell lines allows live monitoring of apoptotic events without the need for any other dyes or fixatives. Our algorithmic implementation forgoes the use of simple image statistics for more robust analytics. Our optimized algorithm can achieve a precision greater than 90% and a sensitivity higher than 85%. Combining our automated algorithm with reporter cells bearing a single-color dye/fluorophore, we expect our approach to become an integral component in the high-throughput drug screening workflow.  相似文献   
55.
L-type voltage-dependent Ca2+ channels (LVDCC) and large conductance Ca2+-activated K+ channels (BKCa) are the major factors defining membrane excitability in vascular smooth muscle cells (VSMCs). The Ca2+ release from sarcoplasmic reticulum through ryanodine receptor significantly contributes to BKCa activation in VSMCs. In this study direct coupling between LVDCC (Cav1.2) and BKCa and the role of caveoline-1 on their interaction in mouse mesenteric artery SMCs were examined. The direct activation of BKCa by Ca2+ influx through coupling LVDCC was demonstrated by patch clamp recordings in freshly isolated VSMCs. Using total internal reflection fluorescence microscopy, it was found that a large part of yellow fluorescent protein-tagged BKCa co-localized with the cyan fluorescent protein-tagged Cav1.2 expressed in the plasma membrane of primary cultured mouse VSMCs and that the two molecules often exhibited FRET. It is notable that each BKα subunit of a tetramer in BKCa can directly interact with Cav1.2 and promotes Cav1.2 cluster in the molecular complex. Furthermore, caveolin-1 deficiency in knock-out (KO) mice significantly reduced not only the direct coupling between BKCa and Cav1.2 but also the functional coupling between BKCa and ryanodine receptor in VSMCs. The measurement of single cell shortening by 40 mm K+ revealed enhanced contractility in VSMCs from KO mice than wild type. Taken together, caveolin-1 facilitates the accumulation/clustering of BKCa-LVDCC complex in caveolae, which effectively regulates spatiotemporal Ca2+ dynamics including the negative feedback, to control the arterial excitability and contractility.  相似文献   
56.
The discovery of naturally evolved fluorescent proteins and their subsequent tuning by protein engineering provided the basis for a large family of genetically encoded biosensors that report a variety of physicochemical processes occurring in living tissue. These optogenetic reporters are powerful tools for live‐cell microscopy and quantitative analysis at the subcellular level. In this review, we present an overview of the transduction mechanisms that have been exploited for engineering these genetically encoded reporters. Finally, we discuss current and future efforts towards the combined use of various optogenetic actuators and reporters for simultaneously controlling and imaging the physiology of cells and tissues.  相似文献   
57.
Hormones regulate the mechanism of plant growth and development, senescence, and plants’ adaptation to the environment; studies of the molecular mechanisms of plant hormone action are necessary for the understanding of these complex phenomena. However, there is no measurable signal for the hormone signal transduction process. We synthesized and applied a quantum dot-based fluorescent probe for the labeling of jasmonic acid (JA) binding sites in plants. This labeling probe was obtained by coupling mercaptoethylamine-modified CdTe quantum dots with JA using N-hydroxysuccinimide (NHS) as a coupling agent. The probe, CdTe–JA, was characterized by transmission electron microscopy, dynamic light scattering, and fluorescent spectrum and applied in labeling JA binding sites in tissue sections of mung bean seedlings and Arabidopsis thaliana root tips. Laser scanning confocal microscopy (LSCM) revealed that the probe selectively labeled JA receptor. The competition assays demonstrated that the CdTe–JA probe retained the original bioactivity of JA. An LSCM three-dimensional reconstruction experiment demonstrated excellent photostability of the probe.  相似文献   
58.
Two isoforms of the band 3 anion exchanger are expressed in mammalian cells, a 911 residue protein (B3) in red cells, and a truncated protein (KB3) in the &#102 -intercalated cells of the kidney. Mutants of both isoforms are known to be associated with human disease, and mistargeting of the mutated proteins has been suggested as the mechanism of pathogenesis in several cases but has been difficult to prove. The present study demonstrates the feasibility of using confocal microscopy for investigating the targeting of homozygous and heterozygous B3 and KB3 mutants. K562 erythroleukemia cells offer several advantages for the stable expression of B3, but have not previously been used for its visualization. A wide range of cell attachment factors, growth conditions, fixation reagents and primary antibodies were investigated to enable imaging of B3 and endogenous GPA by immunofluorescence confocal microscopy in stable K562/B3 clones. B3 co-localized with GPA at the cell surface and also in an intracellular compartment. Functional cell surface expression of KB3 in stable K562 clones was also obtained. Importantly, both B3 and KB3 could be expressed as stable fusion proteins tagged with green fluorescent protein (GFP) in K562 cells, and it was demonstrated that N-terminal GFP-tagging does not affect the targeting or chloride transport properties of B3 or KB3. The use of GFP as well as double-labelling methods developed for immunostaining will be invaluable for investigating the interactions of band 3 with itself and other proteins during its trafficking in erythroid and kidney cells. This will help elucidate how band 3 mutations can cause human diseases such as hereditary spherocytosis and distal renal tubular acidosis.  相似文献   
59.
We developed a new series of Gateway binary vectors, R4pGWBs, that are plant transformation vectors designed for one-step construction of chimeric genes between any promoter and any cDNA. The structure of R4pGWBs is almost the same as the promoterless type of improved pGWBs (ImpGWBs), except that the attR1 site is replaced with attR4, which enables tripartite recombination of these vectors with promoter- and cDNA-entry clones. While ImpGWBs are suitable for promoter analysis and constitutive expression of cDNAs in higher plants, R4pGWBs have a great advantage in expressing a cDNA under the regulation of desired promoters.  相似文献   
60.
An auxotrophic mutant of Corynebaeterium glutamicum was found to accumulate a large amount of l-leucine in the culture medium. The nutritional requirement of the mutant is rather complex but it’s growth was most remarkably stimulated by l-phenylalanine. Acetate (1.5~3.0%) or pyruvate (3%) stimulated the l-leucine production. By a further mutagenic treatment, 329 mutants earring some defect in addition to phenylalanine auxotrophy were derived from the mutant No. 190. Among them, a histidine auxotrophic derivative produced twice as much l-leucine as the parent strain, i.e., the level of l-leucine production by this derivative reached 16 mg/ml in a medium containing 12% glucose, 1 % (NH4)2SO4 and 2.5% CH3COONH4 as carbon and nitrogen sources. Some other auxotrophic markers such as isoleucine- (or threonine-), threonine-, purine(s)-, homoserine-, or methionine- auxotrophy also improved the L-leucine production by No, 190.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号