首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   31篇
  国内免费   3篇
  2024年   1篇
  2023年   9篇
  2022年   5篇
  2021年   6篇
  2020年   9篇
  2019年   14篇
  2018年   14篇
  2017年   22篇
  2016年   10篇
  2015年   15篇
  2014年   26篇
  2013年   30篇
  2012年   14篇
  2011年   17篇
  2010年   13篇
  2009年   8篇
  2008年   17篇
  2007年   10篇
  2006年   12篇
  2005年   12篇
  2004年   13篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   7篇
  1994年   10篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1973年   1篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
41.
Shear stress inhibits while disuse promotes osteocyte apoptosis   总被引:5,自引:0,他引:5  
Cell apoptosis operates as an organizing mechanism in biology in addition to removing effete cells. We have recently proposed that during bone remodeling, osteocyte apoptosis steers osteonal alignment in relation to mechanical loading of the whole bone [J. Biomech. 36 (2003) 1453]. Here we present evidence that osteocyte apoptosis in cell culture is modulated by shear stress. Under static culture conditions, serum starved osteocytes exposed phosphatidylserine (PS) on their cell membrane 6x more often than periosteal fibroblasts and 3x more often than osteoblasts. Treatment with shear stress reduced the number of osteocytes that exposed PS by 90%, but did not affect the other cell types. Fluid shear stress of increasing magnitude, dose-dependently stimulated Bcl-2 mRNA expression in human bone cells, while shear stress did not change Bax expression. These data suggest that disuse promotes osteocyte apoptosis, while mechanical stimulation by fluid shear stress promotes osteocyte survival, by modulating the Bcl-2/Bax expression ratio.  相似文献   
42.
The new Dietary Guidelines for Americans focus on obesity prevention. They recommend increased consumption of whole grains, fruits, vegetables, fish, and low-fat dairy products, within a balanced diet whose total calories have been moderately reduced. Meanwhile, other well-known and well-funded federally sponsored consumer communications promote increased total consumption of beef, pork, and dairy products, including energy dense foods such as bacon cheeseburgers, barbecue pork ribs, pizza, and butter. These latter communications are sponsored by the federal government's commodity promotion programs, known as "checkoff" programs. The programs are established by Congress, approved by a majority of the commodity's producers, managed jointly by a producer board and the U.S. Department of Agriculture, and funded through a tax on the producers. The federal government enforces the collection of more than 600 million US dollars annually in mandatory assessments, approves the advertising and marketing programs, and defends checkoff communication in court as the federal government's own message-in legal jargon, as its own "government speech." Federal support for promoting fruits and vegetables is small by comparison. The checkoff programs recently have become more clearly identified as federal programs. After a recent decision by the U.S. Supreme Court upholding the constitutionality of the checkoff programs, calls for consistency with the Dietary Guidelines may get louder. The current inconsistencies in federal communication undermine the effectiveness of the Dietary Guidelines as an antidote to the shortcomings of the private sector market for information about weight and obesity.  相似文献   
43.
In this study we have profiled the free sterol content of cerebrospinal fluid by a combination of charge tagging and liquid chromatography-tandem mass spectrometry. Surprisingly, the most abundant cholesterol metabolites were found to be C27 and C24 intermediates of the bile acid biosynthetic pathways with structures corresponding to 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7.170 ± 2.826 ng/ml, mean ± S.D., six subjects), 3β-hydroxycholest-5-en-26-oic acid (0.416 ± 0.193 ng/ml), 7α,x-dihydroxy-3-oxocholest-4-en-26-oic acid (1.330 ± 0.543 ng/ml), and 7α-hydroxy-3-oxochol-4-en-24-oic acid (0.172 ± 0.085 ng/ml), and the C26 sterol 7α-hydroxy-26-norcholest-4-ene-3,x-dione (0.204 ± 0.083 ng/ml), where x is an oxygen atom either on the CD rings or more likely on the C-17 side chain. The ability of intermediates of the bile acid biosynthetic pathways to activate the liver X receptors (LXRs) and the farnesoid X receptor was also evaluated. The acidic cholesterol metabolites 3β-hydroxycholest-5-en-26-oic acid and 3β,7α-dihydroxycholest-5-en-26-oic acid were found to activate LXR in a luciferase assay, but the major metabolite identified in this study, i.e. 7α-hydroxy-3-oxocholest-4-en-26-oic acid, was not an LXR ligand. 7α-Hydroxy-3-oxocholest-4-en-26-oic acid is formed from 3β,7α-dihydroxycholest-5-en-26-oic acid in a reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid dehydrogenase (HSD3B7), which may thus represent a deactivation pathway of LXR ligands in brain. Significantly, LXR activation has been found to reduce the symptoms of Alzheimer disease (Fan, J., Donkin, J., and Wellington C. (2009) Biofactors 35, 239–248); thus, cholesterol metabolites may play an important role in the etiology of Alzheimer disease.  相似文献   
44.
Although load-induced mechanical signals play a key role in bone formation and maintenance of bone mass and structure, the cellular mechanisms involved in the translation of these signals are still not well understood. Recent identification of a novel flow-induced mechanosignaling pathway involving VEGF in osteoblasts and the known VEGF regulation of actin reorganization in various cell types has led us to hypothesize that fluid shear stress-induced Vegf up-regulation underlies the actin cytoskeleton adaptation observed in osteoblasts during mechanotransduction. Our results show that MC3T3-E1 cells secrete significant VEGF in response to 5 h of pulsatile fluid shear stress (PFSS; 5 dynes/cm2 at 1 Hz), whereas expression of VEGF receptors (VEGFR-1, VEGFR-2, or NRP1) is unaffected. These receptors, in particular VEGFR-2, participate in PFSS-induced VEGF release. Exposure to flow-conditioned medium or exogenous VEGF significantly induces stress fiber formation in osteoblasts that is comparable with PFSS-induced stress fiber formation, whereas VEGF knockdown abrogates this response to PFSS, thereby providing evidence that flow-induced VEGF release plays a role in actin polymerization. Using neutralizing antibodies against the receptors and VEGF isoforms, we found that soluble VEGFs, in particular VEGF164, play a crucial role in transient stress fiber formation during osteoblast mechanotransduction, most likely through VEGFR-2 and NRP1. Based on these data we conclude that flow-induced VEGF release from osteoblasts regulates osteoblast actin adaptation during mechanotransduction and that VEGF paracrine signaling may provide potent cross-talk among bone cells and endothelial cells that is essential for fracture healing, bone remodeling, and osteogenesis.  相似文献   
45.
Previous studies have demonstrated that factor VIII (FVIII) or platelets alone increase cleavage of von Willebrand factor (VWF) by ADAMTS13 under mechanically induced shear stresses. We show in this study that the combination of FVIII and platelets at the physiological concentrations is more effective than either one alone. In the absence of FVIII, lyophilized platelets increase the formation of cleavage product by 2–3-fold. However, in the presence of physiological concentration of FVIII (1 nm), the formation of VWF cleavage product increases dramatically as a function of increasing platelets with the maximal rate enhancement of ∼8-fold. Conversely, in the presence of a physiological concentration of lyophilized platelets (150 × 103/μl), the half-maximal concentration of FVIII required to accelerate VWF proteolysis by ADAMTS13 reduces by ∼10-fold (to ∼0.3 nm) compared with that in the absence of platelets (∼3.0 nm). Further studies using the FVIII derivative that lacks an acidic region (a3), an antiplatelet glycoprotein 1bα IgG, and a purified recombinant VWF-A1 domain or glycoprotein 1bα-stripped platelets demonstrate that the synergistic rate-enhancing effect of FVIII and platelets depends on their specific binding interactions with VWF. Our findings suggest that FVIII and platelets are cofactors that regulate proteolysis of multimeric VWF by ADAMTS13 under physiological conditions.  相似文献   
46.
47.
We consider and compare the various different kinds of flow that may take place in the anterior chamber of a human eye. The physical mechanisms responsible for causing such flows may be classified as follows: (i) buoyancy-driven flow arising from the temperature difference between the anterior surface of the cornea and the iris, (ii) flow generated by the aqueous production of the ciliary body, (iii) flow generated by the interaction between buoyancy and gravity while sleeping while sleeping in a face-up position, (iv) flow generated by phakodenesis (lens tremor), (v) flow generated by Rapid Eye Movement (REM) during sleep. Each flow is studied using a traditional fluid mechanics/asymptotic analysis approach. We also assess the veracity of a hypothesis that was recently advanced [see Maurice, D.M., 1998. The Von Sallman Lecture 1996: An ophthalmological explanation of REM sleep. Exp. Eye. Res. 66, 139–145, for details] to suggest that, contrary to previous opinion, the purpose of REM during sleep is to ensure corneal respiration in the absence of the buoyant mixing that routinely takes place due to (i) above during waking conditions.  相似文献   
48.
Fluid flow stress (FSS) is a major mechanical stress that induces bone remodeling upon orthodontic tooth movement, whereas CCN family protein 2 (CCN2) is a potent regenerator of bone defects. In this study, we initially evaluated the effect of laminar FSS on Ccn2 expression and investigated its mechanism in osteoblastic MC3T3-E1 cells. The Ccn2 expression was drastically induced by uniform FSS in an intensity dependent manner. Of note, the observed effect was inhibited by a Rho kinase inhibitor Y27632. Moreover, the inhibition of actin polymerization blocked the FSS-induced activation of Ccn2, whereas inducing F-actin formation using cytochalasin D and jasplakinolide enhanced Ccn2 expression in the same cells. Finally, F-actin formation was found to induce osteoblastic differentiation. In addition, activation of cyclic AMP-dependent kinase, which inhibits Rho signaling, abolished the effect of FSS. Collectively, these findings indicate the critical role of actin polymerization and Rho signaling in CCN2 induction and bone remodeling provoked by FSS.  相似文献   
49.
Intoxication with Aconitum napellus is rare in our regions. Aconite alkaloids can cause ventricular arrhythmia by a prolonged activation of sodium channels. Because the margin of safety is low between the analgesic and toxic dose, intoxication is not rare when Aconite is used in herbal medicine. We present a case in which a 39-year-old male was accidentally intoxicated with Aconite. Even though no antidote or adequate therapy is available he was successfully resuscitated. (Neth Heart J 2008;16: 96-9.)  相似文献   
50.
对于非对称声带发声过程的研究,有助于将正常语音的研究拓展到病理状态,从而为嗓音康复工程打下基础。采用具有嵌入式可活动声门结构的喉部物理模型,研究了声门最小直径为0.0402cm.跨声门压分别为100、500、1000和1500Pa时,全喉及半喉内的准稳态流场分布及其与发声参量的关系。同时.运用三维有限元方法预测了上述边界条件对应的流场分布,计算结果有效地支持了实验数据。结果表明,对称结构下存在着非对称压力和速度成分,但是由于它所占的比率有限(不超过10%),对正常发声的影响不大。非对称结构下,由声门入口处极高的上下表面压力差(通常为跨声门压的1-3倍)导致的倾斜流和涡流的出现、气流分离点位置后移、分离区域增大、声门出入口间压差占跨声门压的比率降低(平均30%)、压力速度场的变化程度减弱等因素以及由此带来的能量损耗,是非对称结构下发声效率降低、发音失真的主要原因。研究提示:声门重建方案的设计应尽量满足对称结构原则。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号