首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   5篇
  国内免费   2篇
  241篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   9篇
  2013年   10篇
  2012年   9篇
  2011年   4篇
  2010年   7篇
  2009年   15篇
  2008年   24篇
  2007年   12篇
  2006年   7篇
  2005年   15篇
  2004年   6篇
  2003年   9篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   10篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
91.
The ability to locomote is a defining characteristic of all animals. Yet, all but the most trivial forms of navigation are poorly understood. Here we report and discuss the analytical results of an in-depth study of a simple navigation problem. In principle, there are two strategies for navigating a straight course. One is to use an external directional reference and to continually reorient with reference to it. The other is to monitor body rotations from internal sensory information only. We showed previously that, at least for simple representations of locomotion, the first strategy will enable an animal or mobile agent to move arbitrarily far away from its starting point, but the second strategy will not do so, even after an infinite number of steps. This paper extends and generalizes the earlier results by demonstrating that these findings are true even when a very general model of locomotion is used. In this general model, error components within individual steps are not independent, and directional errors may be biased. In the absence of a compass, the expected path of a directed walk in general approximates a logarithmic spiral. Some examples are given to illustrate potential applications of the quantitative results derived here. Motivated by the analytical results developed in this work, a nomenclature for directed walks is proposed and discussed. Issues related to path integration in mammals and robots, and measuring the curvature of a noisy path are also addressed using directed walk theory.  相似文献   
92.
Diao Y  Ma D  Wen Z  Yin J  Xiang J  Li M 《Amino acids》2008,34(1):111-117
Summary. Transmembrane (TM) proteins represent about 20–30% of the protein sequences in higher eukaryotes, playing important roles across a range of cellular functions. Moreover, knowledge about topology of these proteins often provides crucial hints toward their function. Due to the difficulties in experimental structure determinations of TM protein, theoretical prediction methods are highly preferred in identifying the topology of newly found ones according to their primary sequences, useful in both basic research and drug discovery. In this paper, based on the concept of pseudo amino acid composition (PseAA) that can incorporate sequence-order information of a protein sequence so as to remarkably enhance the power of discrete models (Chou, K. C., Proteins: Structure, Function, and Genetics, 2001, 43: 246–255), cellular automata and Lempel-Ziv complexity are introduced to predict the TM regions of integral membrane proteins including both α-helical and β-barrel membrane proteins, validated by jackknife test. The result thus obtained is quite promising, which indicates that the current approach might be a quite potential high throughput tool in the post-genomic era. The source code and dataset are available for academic users at liml@scu.edu.cn. Authors’ address: Menglong Li, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China  相似文献   
93.
Despite accumulating examples of selection acting on heritable traits in the wild, predicted evolutionary responses are often different from observed phenotypic trends. Various explanations have been suggested for these mismatches. These include within‐individual changes across lifespan that can create important variation in genetic architecture of traits and selection acting on them, but also potential problems with the methodological approach used to predict evolutionary responses of traits. Here, we used an 8‐year data set on tree swallow (Tachycineta bicolor) to first assess the effects of differences among three nestling life‐history stages on the genetic (co)variances of two morphological traits (body mass and primary feather length) and the selection acting on them over three generations. We then estimated the evolutionary potential of these traits by predicting their evolutionary responses using the breeder's equation and the secondary theorem of selection approaches. Our results showed variation in strength and direction of selection and slight changes in trait variance across ages. Predicted evolutionary responses differed importantly between both approaches for half of the trait–age combinations we studied, suggesting the presence of environmentally induced correlations between focal traits and fitness possibly biasing breeder's equation predictions. Our results emphasize that predictions of evolutionary potential for morphological traits are likely to be highly variable, both in strength and direction, depending on the life stage and method used, thus mitigating our capacity to predict adaptation and persistence of wild populations.  相似文献   
94.
We observed the foraging behavior of Diadegma semiclausum (Hymenoptera:Ichneumonidae), a larval parasitoid of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in a wind tunnel to determine how interpatch distance affects patch time allocation. Individual female wasps were released onto an experimental patch infested with host larvae and were allowed freely to leave for an identically extrapatch placed upwind of the experimental patch with varying interpatch distances. The effects of interpatch distance and within-patch foraging experience on the patch-leaving tendency of the parasitoid were analyzed bymeans of the proportional hazards model. Increasing interpatch distance andunsuccessful host encounter as a result of host defense decreased the patch-leaving tendency, while successful oviposition and unsuccessful search time since last oviposition increased the patch-leaving tendency. Asa result, both patch residence time and number of ovipositions by D. semiclausum increased with increasing interpatch distance, which appears to agree with the general predictions of the marginal value theorem that a parasitoid should stay longer and parasitize more hosts with increasing interpatch distance.  相似文献   
95.
Multiple organisms can sometimes affect a common phenotype. For example, the portion of a leaf eaten by an insect is a joint phenotype of the plant and insect and the amount of food obtained by an offspring can be a joint trait with its mother. Here, I describe the evolution of joint phenotypes in quantitative genetic terms. A joint phenotype for multiple species evolves as the sum of additive genetic variances in each species, weighted by the selection on each species. Selective conflict between the interactants occurs when selection takes opposite signs on the joint phenotype. The mean fitness of a population changes not just through its own genetic variance but also through the genetic variance for its fitness that resides in other species, an update of Fisher''s fundamental theorem of natural selection. Some similar results, using inclusive fitness, apply to within-species interactions. The models provide a framework for understanding evolutionary conflicts at all levels.  相似文献   
96.
Blue jays (Cyanocitta cristata) were presented with a foragingsituation in which half of the patches they encountered containedno prey and half contained a single prey item. Experimentallydetermined probability distributions controlled prey arrivaltimes in those patches that contained prey. Patch residencein empty patches was studied during four experiments. In thefirst, prey arrival was exponentially distributed. Residencetimes increased with travel time as predicted by a rate-maximizationmodel, but the bird stayed in empty patches much longer thanpredicted. During the second experiment, prey arrival was uniformlydistributed. The jays again stayed longer than optimal, andpatch residence times increased as travel time increased, althoughthe residence time that maximized rate of intake was independentof travel time under these conditions. In the third experiment,exponential and uniform patches were randomly intermixed. Thejays showed larger travel-time effects in the exponential thanin the uniform patch. However, the travel-time effect in theuniform patch was contrary to rate-maximization predictions,and the birds again overstayed in both patch types. In the fourthexperiment, prefeeding at the start of each foraging bout slightlyincreased overstaying rather than decreasing overstaying, aswould be expected if overstaying were due to underestimatingenvironmental quality. Consistent and dramatic overstaying anda travel-time effect under conditions where travel time hasno effect on optimal residence times suggest that the rate-maximizationapproach does not apply to foraging problems involving patchuncertainty.  相似文献   
97.
Summary We compared the metapopulation dynamics of predator—prey systems with (1) adaptive global dispersal, (2) adaptive local dispersal, (3) fixed global dispersal and (4) fixed local dispersal by predators. Adaptive dispersal was modelled using the marginal value theorem, such that predators departed patches when the instantaneous rate of prey capture was less than the long-term rate of prey capture averaged over all patches, scaled to the movement time between patches. Adaptive dispersal tended to stabilize metapopulation dynamics in a similar manner to conventional fixed dispersal models, but the temporal dynamics of adaptive dispersal models were more unpredictable than the smooth oscillations of fixed dispersal models. Moreover, fixed and adaptive dispersal models responded differently to spatial variation in patch productivity and the degree of compartmentalization of the system. For both adaptive dispersal and fixed dispersal models, localized (stepping-stone) dispersal was more strongly stabilizing than global (island) dispersal. Variation among predators in the probability of dispersal in relation to local prey density had a strong stabilizing influence on both within-patch and metapopulation dynamics. These results suggest that adaptive space use strategies by predators could have important implications for the dynamics of spatially heterogeneous trophic systems.  相似文献   
98.
99.
Summary A theorem, analogous to the continuous time Threshold Theorem of Kermack and McKendrick, is proved for a certain discrete time epidemic model. This model, in contrast to its continuous time analogue, leads to some solutions in which the total population of susceptibles may become infected in a finite time.  相似文献   
100.
An evolutionary Monte Carlo algorithm for predicting DNA hybridization   总被引:1,自引:0,他引:1  
Kim JS  Lee JW  Noh YK  Park JY  Lee DY  Yang KA  Chai YG  Kim JC  Zhang BT 《Bio Systems》2008,91(1):69-75
Many DNA-based technologies, such as DNA computing, DNA nanoassembly and DNA biochips, rely on DNA hybridization reactions. Previous hybridization models have focused on macroscopic reactions between two DNA strands at the sequence level. Here, we propose a novel population-based Monte Carlo algorithm that simulates a microscopic model of reacting DNA molecules. The algorithm uses two essential thermodynamic quantities of DNA molecules: the binding energy of bound DNA strands and the entropy of unbound strands. Using this evolutionary Monte Carlo method, we obtain a minimum free energy configuration in the equilibrium state. We applied this method to a logical reasoning problem and compared the simulation results with the experimental results of the wet-lab DNA experiments performed subsequently. Our simulation predicted the experimental results quantitatively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号