首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1235篇
  免费   55篇
  国内免费   45篇
  2023年   11篇
  2022年   13篇
  2021年   13篇
  2020年   15篇
  2019年   23篇
  2018年   34篇
  2017年   25篇
  2016年   25篇
  2015年   23篇
  2014年   32篇
  2013年   48篇
  2012年   21篇
  2011年   41篇
  2010年   26篇
  2009年   52篇
  2008年   59篇
  2007年   62篇
  2006年   60篇
  2005年   59篇
  2004年   58篇
  2003年   44篇
  2002年   31篇
  2001年   40篇
  2000年   37篇
  1999年   38篇
  1998年   41篇
  1997年   38篇
  1996年   27篇
  1995年   27篇
  1994年   29篇
  1993年   20篇
  1992年   17篇
  1991年   21篇
  1990年   14篇
  1989年   27篇
  1988年   18篇
  1987年   9篇
  1986年   10篇
  1985年   12篇
  1984年   16篇
  1983年   12篇
  1982年   8篇
  1981年   14篇
  1980年   16篇
  1979年   24篇
  1978年   8篇
  1977年   13篇
  1976年   6篇
  1974年   6篇
  1973年   5篇
排序方式: 共有1335条查询结果,搜索用时 175 毫秒
81.
Chlorophyll a fluorescence kinetics, net photosynthetic rate (P N), water relations, and photosynthetic pigment contents were studied during acclimation of in vitro grown tobacco to higher irradiance (HL; 700 mol m–2 s–1). Plantlets were grown on medium containing sucrose in glass vessels (G-plants) or in Magenta boxes (M-plants) with better CO2 supply in the latter ones. The effect of HL was studied either (1) in plantlets grown under original in vitro conditions (closed vessels), (2) in in vitro plantlets exposed to ambient CO2 concentration (covers removed), or (3) in plantlets transplanted to ex vitro into pots with sand and nutrient solution. Higher P N, and fraction of closed photosystem 2 (PS2) centres (1 – qP), and lower content of xanthophyll cycle pigments were found in M-plants compared to G-plants. HL treatment caused photoinhibition particularly in plants kept in closed vessels. This was indicated by the decrease in the ratio of Fv/Fm and by the increase in non-photochemical quenching, 1 – qp, and content of xanthophyll cycle pigments. Better CO2 supply ensured by the removal of closure lead to the moderate reduction of symptoms of photoinhibition, although stomatal conductance (g s), transpiration rate (E), and P N were negatively affected. The main reason was the decrease in relative air humidity, which caused similar reduction of P N, E, and g s after the transfer of plantlets to ex vitro. Nevertheless, plant response to HL seemed not to be affected by any possible root injury caused by transfer to ex vitro. The differences in contents of xanthophyll cycle pigments, degree of de-epoxidation, P N, and quenching parameters between M- and G-plantlets were still significant 7 d after ex vitro transfer and HL acclimation.  相似文献   
82.
Vitis vinifera red berries are characterized by anthocyanins whose chemical structures are among the simplest encountered in higher plants. On the contrary, many plants, including orchids, petunias, red cabbage, elderberries, potatoes for instance, have developed very complicated anthocyanins featuring side-chains at the available positions of the aglycone skeleton. Such pigments were shown to possess bio-physico-chemical properties not to be seen with the grape common anthocyanins. Among beverages (water, tea, beer, wine, coffee, juices, milk), red wine is the only one whose organoleptic properties improve with time and this is called ageing. The grape/fresh red wine pigments, after a few months, disappear from the wine giving birth to new pigments resulting from the wine spontaneous chemistry allowing it to remain red for many years. What are the wine pigments and why are they so stable is the purpose of this mini-review. The structural simplicity of grape anthocyanins and the long lasting colour of red wine is another French paradox; we call it French paradox II.  相似文献   
83.
Two 6-hydroxypelargonidin glycosides were isolated from the orange-red flowers of Alstroemeria cultivars, and determined to be 6-hydroxypelargonidin 3-O-(beta-D-glucopyranoside) and 3-O-[6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside], respectively, by chemical and spectroscopic methods. In addition, five known anthocyanidin glycosides, 6-hydroxycyanidin 3-malonylglucoside, 6-hydroxycyanidin 3-rutinoside, cyanidin 3-malonylglucoside, cyanidin 3-rutinoside and pelargonidin 3-rutinoside were identified in the flowers.  相似文献   
84.
The dynamics of phenolic galloylglucoses (di-, tri-, tetra- and penta-galloylglucose), flavonoids (quercitin and quercitin glycosides) and sideroxylonal were compared with that of xanthophyll cycle-dependent energy dissipation during rapid induction of chilling-dependent photo-inhibition. Pre-dawn xanthophyll cycle engagement of seedlings of Eucalyptus nitens transferred from mild nursery conditions to a low temperature controlled environment increased logarithmically during eight days of treatment. Photochemical efficiency and flavonoids decreased after four days of treatment and non-photochemical quenching after two days of treatment. Galloylglucoses and sideroxylonal decreased linearly during treatment. These results demonstrate that rapid changes in foliar phenolic levels are associated with abrupt changes in the plant environment. It is argued that under these growth-chamber conditions, the xanthophyll cycle facilitated dissipation of excess light energy, lessening the requirement for the dissipation of energy or antioxidant activity through phenolic metabolites.  相似文献   
85.
Šprtová  M.  Špunda  V.  Kalina  J.  Marek  M.V. 《Photosynthetica》2003,41(4):533-543
Cloned saplings of beech (7-y-old) were exposed to enhanced UV-B irradiation (+25 %) continuously over three growing seasons (1999–2001). Analysis of CO2 assimilation, variable chlorophyll (Chl) a fluorescence, and pigment composition was performed in late summer of the third growing season to evaluate the influence of long-term elevated UV-B irradiation. This influence was responsible for the stimulation of the net assimilation rate (P N) over a range of irradiances. The increase in P N was partially connected to increase of the area leaf mass, and thus to the increased leaf thickness. Even a higher degree of UV-B induced stimulation was observed at the level of photosystem 2 (PS2) photochemistry as judged from the irradiance response of electron transport rate and photochemical quenching of Chl a. The remarkably low irradiance-induced non-photochemical quenching of maximum Chl a fluorescence (NPQ) in the UV-B plants over the entire range of applied irradiances was attributed both to the reduced demand on non-radiative dissipation processes and to the considerably reduced contribution of the quenching localised in the inactivated PS2 reaction centres. Neither the content of Chls and total carotenoids expressed per leaf area nor the contents of lutein, neoxanthin, and the pool of xanthophyll cycle pigments (VAZ) were affected under the elevated UV-B. However, the contributions of antheraxanthin (A) and zeaxanthin (Z) to the entire VAZ pool in the dark-adapted UV-B treated plants were 1.61 and 2.14 times higher than in control leaves. Surprisingly, the retained A+Z in UV-B treated plants was not accompanied with long-term down-regulation of the PS2 photochemical efficiency, but it facilitated the non-radiative dissipation of excitation energy within light-harvesting complexes (LHC) of PS2. Thus, in the beech leaves the accumulation of A+Z, induced by other factors than excess irradiance itself, supports the resistance of PS2 against combined effects of high irradiance and elevated UV-B.  相似文献   
86.
Gilbert  M.  Domin  A.  Becker  A.  Wilhelm  C. 《Photosynthetica》2000,38(1):111-126
Primary productivity in marine waters is widely estimated by the measurements of 14C incorporation, the underwater light climate, and the absorption spectra of phytoplankton. In bio-optical models the quantum efficiency of carbon fixation derived from 14C incorporation rates, the photosynthetically absorbed radiation derived from the underwater light climate, and the phytoplankton absorption spectra are used to calculate time- and depth-integrated primary productivity. Due to the increased sensitivity of commercially available fluorometers, chlorophyll a in vivo fluorescence became a new tool to assess the photosynthetic activity of phytoplankton. Since fluorescence data yield only relative photosynthetic electron transport rates, a direct conversion into absolute carbon fixation rates is not possible. Here, we report a procedure how this problem can be adressed in freshwater phytoplankton. We adapted a marine bio-optical model to the freshwater situation and tested if this model yields realistic results when applied to a hypertrophic freshwater reservoir. Comparison of primary productivity derived from 14C incorporation to primary productivity derived from Chl a fluorescence showed that the conversion of fluorescence data into carbon fixation rates is still an unsolved problem. Absolute electron transport rates calculated from fluorescence data tend to overestimate primary production. We propose that the observed differences are caused mainly by neglecting the package effect of pigments in phytoplankton cells and by non-carbon related electron flow (e.g., nitrogen fixation). On the other hand, the 14C incorporation rates can be artificially influenced by "bottle effects", especially near the water surface, where photoinhibition, photorespiration, and Mehler reaction can play a major role.  相似文献   
87.
88.
The effects on pigment composition and photosynthesis of low temperature during growth were examined in the third leaf of three chilling-tolerant and three chilling-sensitive genotypes of Zea mays L. The plants were grown under a controlled environment at 24 or 14 °C at a photon flux density (PFD) of 200 or 600 μ mol m–2 s–1. At 24 °C, the two classes of genotypes showed little differences in their photosynthetic activity and their composition of pigments. At 14 °C, photosynthetic activity was considerably reduced but the chilling-tolerant genotypes displayed higher photosynthetic rates than the chilling-sensitive ones. Plants grown at 14 °C showed a reduced chlorophyll (Chl) a + b content and a reduced Chl a / b ratio but an increased ratio of total carotenoids to Chl a + b . These changes in pigment composition in plants grown at low temperature were generally more pronounced in the chilling-sensitive genotypes than in the tolerant ones, particularly at high PFD. Furthermore, at 14 °C, all the genotypes showed increased ratios of lutein, neoxanthin and xanthophyll-cycle carotenoids to Chl a + b but a reduced ratio of β -carotene to Chl a + b , especially at high PFD. At 14 °C, the chilling-tolerant genotypes, when compared with the sensitive ones, were characterized by higher contents of β -carotene and neoxanthin, a lower content of xanthophyll-cycle carotenoids, a lower ratio of xanthophylls to β -carotene, and less of their xanthophyll-cycle carotenoid pool in the form of zeaxanthin. These differences between the two classes of genotypes were more pronounced at high PFD than at low PFD. The results are discussed in terms of the relationship that may exist in maize between pigment composition and the capacity to form an efficient photosynthetic apparatus at low growth temperature.  相似文献   
89.
One of the great unanswered questions in the biology of both plants and animals is “How do simple groups of embryonic cells develop into complex and highly structured organisms, or parts of organisms?” The answers are only beginning to be known; the processes involved include establishment of positional information, and its interpretation into patterns of cell division and cellular differentiation. One remarkable and attractive example of the formation of a complex structure from a simple group of cells is the development of a flower, with its characteristic types, numbers and patterns of floral organs. Because of the ease with which plants (especially the plantArabidopsis thaliana) can be manipulated in the laboratory, flowers provide a unique opportunity to learn some of the fundamental rules of development.  相似文献   
90.
兰花蕉花部维管束系统的解剖学研究   总被引:10,自引:5,他引:5  
兰花蕉花梗的维管束分散排列.子房基部的维管束排成两部分,外方为一轮大维管束环,中央为分散排列的小维管束区。前者的纸管束进入子房壁,后者进入子房的中轴,形成股座纸管束;及至延长都以后,股座维管束逐渐消失.子房壁上的维管束较易识别的有心皮背束、心皮背束伴束和隔膜束.三束心皮背束经延长部最终进入花柱和柱头.心皮背束指心皮背束务与其紧靠的大维管束,三枚心皮背束伴束最终分别进入三枚外轮雄蓝.三枚隔膜束中远轴面的两枚分别进入两校内轮雄蕊,而近轴面的一枚伴随着第六枚雄蓝的缺失最后进入唇瓣中央.子房壁其余的维管束进入延长部后,先向外分出一轮纸管束进入花幕,余下的中央部分排成一轮心形的线管来环.该环远轴面的维管束分为两半分别进入两枚侧生花瓣;近轴面即心形凹陷一侧初为两轮即外轮大的维管束与内轮小的维管束,后排成一轮并与近轴面的隔膜束一同进入唇瓣.兰花蕉的唇瓣既为花瓣成员,又含一枚缺失的雄蓝维管束,与姜目已报道的只来自退化雄蕊的竹芋科的兜状结构和美人蕉科、姜科、闭鞘姜科的唇瓣有明显区别.在旅人蕉科尚未有研究资料的情况下,作者根据已有资料,对姜目雄蕊维管束系统来源和结构进行比较,初步认为在姜目的系统演化上,兰花蕉科与芭蕉料更近.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号