首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2010篇
  免费   82篇
  国内免费   112篇
  2023年   23篇
  2022年   20篇
  2021年   20篇
  2020年   32篇
  2019年   25篇
  2018年   31篇
  2017年   28篇
  2016年   24篇
  2015年   37篇
  2014年   51篇
  2013年   77篇
  2012年   45篇
  2011年   30篇
  2010年   42篇
  2009年   58篇
  2008年   85篇
  2007年   83篇
  2006年   94篇
  2005年   81篇
  2004年   80篇
  2003年   104篇
  2002年   82篇
  2001年   67篇
  2000年   65篇
  1999年   60篇
  1998年   51篇
  1997年   62篇
  1996年   67篇
  1995年   59篇
  1994年   55篇
  1993年   58篇
  1992年   35篇
  1991年   48篇
  1990年   49篇
  1989年   43篇
  1988年   39篇
  1987年   34篇
  1986年   31篇
  1985年   49篇
  1984年   35篇
  1983年   21篇
  1982年   29篇
  1981年   31篇
  1980年   27篇
  1979年   4篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1974年   5篇
  1972年   3篇
排序方式: 共有2204条查询结果,搜索用时 78 毫秒
61.
A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to estimate fine root production, two methods were used to estimate fine root mortality, and decomposition was estimated using the buried bag technique. During both 1986 and 1987, fine root elongation began in early April, peaked during July and August, and nearly ceased by mid-October. Mean fine root ( 3 mm diameter) biomass in the surface 28-cm was 2.5 t ha–1 and necromass was 2.9 t ha–1. Annual decomposition rates ranged from 17 to 30% beneath the litter and 27 to 52% at a depth of 10 cm. Depending on the method used for estimation, fine root production ranged from 2.0 to 2.9 t ha–1, mortality ranged from 1.8 to 3.7 t ha–1 yr–1, and decomposition was 0.9 t ha–1 yr–1. Thus, turnover ranged from 0.8 to 1.2 yr–1. The nutrients that cycled through fine roots annually were 4.5–6.1 kg Ca, 1.1–1.4 kg Mg, 0.3–0.4 kg K, 1.2–1.7 kg P, 20.3–27.3 kg N, and 1.8–2.4 kg S ha–1. Fine root turnover was less important than leaf litterfall in the cycling of Ca and Mg and was similar to leaf litterfall in the amount of N, P, K and S cycled.  相似文献   
62.
A field study was undertaken to establish the demand for P by mixed herbage, manipulated by cutting regimes, and the extent to which orthophosphate alone in soil solution could meet this demand from three cambisols derived from different parent materials. Differences in soil types were sufficient to produce significantly different rooting patterns at each site. Yields for 7-and 10-cm treatments generally exceeded those for swards cut to 2-and 4-cm. The highest yields were from plots cut once at the end of the season, or when herbage was cut in June and October only. Yields fell in the second season by an average of 30%. Two cuts in the season resulted in almost twice the P uptake compared with other treatments, leading to the view that a silage cut stimulated root growth. Rooting was deepest in Tarves Association soil (Dystric cambisol), densest in Insch Association soil (Eutric cambisol) and intermediate in Foudland Association soil (Dystric cambisol) but herbage yield at each site was similar. Whole season mean P and N content in roots ranged from 1.0 to 3.4 and from 8.1 to 27.9 mg g–1 dry weight, respectively. The lowest values were in once cut herbage and were half those in herbage cut in June and October only. Data for the total P resources of the soils, extractable P, and shoot and root P at each site are presented together with data for P in soil solution (principally organic) from an associated soil solution study. There was a disparity between daily uptake and orthophosphate in soil solution. These findings suggested that it was probable that soluble organic forms of P are important for P nutrition in these nutrient poor soils, and could account for the excess of observed P uptake (from soils low in P) over that predicted by mechanistic mathematical models.  相似文献   
63.
A method is described for sampling rhizosphere soil under newly establishedPicea sitchensis andAcer pseudoplatanus. The technique involves taking soil samples to a depth of 150 mm at 100 mm intervals along transects, each 45° from its neighbour, radiating from the base of the stem. Invertase activities were measured in the soil samples and compared to their activities in fallow and rhizosphere soils. When the field soil was dry, the tree root systems were carefully excavated to retain as many fine roots as possible. The distribution of the soil invertase was matched to the spatial distribution of the roots showing the precise position of the rhizosphere relative to the initial blind soil sampling. Statistics were applied to derive equations for calculating the percentage enzyme activity relative to that found in rhizosphere soil at various locations radiating from the base of the stem. This information was subsequently applied to soil sampled under trees of the same age as those excavated to give a non-destructive method for sampling rhizosphere soil routinely from under a large number of trees.  相似文献   
64.
The pH of the nutrient solution bathing the roots of four-month-oldPinus contorta var.latifolia Englm. seedlings was monitored continuously between additions of nutrients. Nitrogen was supplied in the form of NH4NO3, and was added three times per week in amounts relative to seedling fresh weight. No pH change was associated with the nutrient addition cycle; however, extinguishing of the lights at night resulted in a decrease in pH of almost half a pH unit in the first hour. The pH reverted to normal within a few hours. Re-illumination resulted in a pH increase of a smaller magnitude, but over a similar time span. Estimation of the proton extrusion rate gave values of about 17 µmol (g FW root)–1 h–1.  相似文献   
65.
Sucrose and fructan metabolism in wheat roots at chilling temperatures   总被引:3,自引:0,他引:3  
Sucrose and fructan metabolism were studied in wheat ( Triticuin aotiirum L. cv. Tribal 800) roots during a period at chilling temperature. Enzyme activities related to fructan and sucrose metabolism were measured. Sucrose-sucrose fructosyl transfer-ase (EC 2.4.1.99) activity increased more than 25-fold when plants were cooled to 4°C. Sucrose synthase (EC 2.4.1.13) and sucrose-phosphate synthase (EC 2.4.1.14) activities also increased, but low temperatures had no significant effect on invertaso (EC 3.2.1.26) or on fructan hydrolase (EC 3.2.1.26) activities. The accumulation pattern of fructan in roots was different to that in leaves. In roots chilling stimulated the synthesis of fructans of high degree of polymerization.  相似文献   
66.
The effects of highly and moderately acid soils on total biomass, biomass partitioning, fine root characteristics and nutritional status of beech seedlings (Fagus sylvatica L.) were studied in a growth chamber experiment. In Haplic Arenosols seedlings grew slowly but equally well without damage symptoms in a highly acid and a moderately acid soil horizon. The moderately acid Ah+Bw-horizon of a Eutric Cambisol was favourable to seedling growth. The fine root development was reduced in the highly acid A+Bw-horizon of a Dystric Cambisol and in the Ah+E-horizon of a Haplic Podzol, the latter of which also caused increased mortality. Seedling growth in the B2-horizon of the Haplic Podzol was vigorous, in spite of a higher level of extractable Al and lower base saturation as compared with the Ah+E-horizon. These results are interpreted in relation to soil acidity, soil Al and nutritional status of the seedlings. We conclude that neither Al-toxicity nor nutrient deficiency cause the damage symptoms observed in the Ah+E-horizon of a Haplic Podzol and the fine root reduction in the A+Bw-horizon of a Dystric Cambisol. The damage symptoms of the PZhA treatment seems to be more the result of H-toxicity or H-related factors other than nutrient shortage or Al-toxicity. Other pH-related toxic factors are discussed.  相似文献   
67.
The generally rhizotoxic ion Al3+ often enhances root growth at low concentrations. The hypothesis that Al3+ enhances growth by relieving H+ toxicity was tested with wheat seedlings ( Triticum aestivum L.). Growth enhancement by Al3+ only occurred under acidic conditions that reduced root elongation. Al3+ increased cell membrane electrical polarity and stimulated H+ extrusion. Previous investigations have shown that Al3+ decreases solute leakage at low pH and that the alleviation of H+ toxicity by cations appears to be a general phenomenon with effectiveness dependent upon charge (C3+>C2+>Cl+). Alleviation of one cation toxicity by another toxic cation appears to be reciprocal so that Al3+ toxicity is relieved by H+. It has been argued previously that this latter phenomenon accounts for the apparent toxicity of ALOH2+ and Al(OH)+2. Reduction of cell-surface electrical potential by the ameliorative cation may reduce the cell-surface activity of the toxic cation.  相似文献   
68.
Distribution of net assimilated C in meadow fescue (Fectuca pratensi L.) was followed before and after cutting of the shoots. Plants were continuously labelled in a growth chamber with 14C-labelled CO2 in the atmosphere from seedling to cutting and with 13C-labelled CO2 in the atmosphere during regrowth after the cutting. Labelled C, both 14C and 13C, was determined at the end of the two growth periods in shoots, crowns, roots, soil and rhizosphere respiration. Distribution of net assimilated C followed almost the same pattern at the end of the two growth periods, i.e. at the end of the 14C- and the 13C-labelling periods. Shoots retained 71–73% of net assimilated C while 9% was detected in the roots and 11–14% was released from the roots, determined as labelled C in soil and as rhizosphere respiration. At the end of the 2nd growth period, after cutting and regrowth, 21% of the residual plant 14C at cutting (14C in crowns and roots) was found in the new shoot biomass. A minor part of the residual plant 14C, 12%, was lost from the plants. The decreases in 14C in crowns and roots during the regrowth period suggest that 14C in both crowns and roots was translocated to new shoot tissue. Approximately half of the total root C at the end of the regrowth period after cutting was 13C-labelled C and thus represents new root growth. Root death after cutting could not be determined in this experiment, since the decline in root 14C during the regrowth period may also be assigned to root respiration, root exudation and translocation to the shoots. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   
69.
Ethylene production by primary roots of 72–h-old intact seedlings of Zea mays L. cv. LG11 was studied under ambient and sub-ambient oxygen partial pressures (pO2) using a gas flow-through system linked to a photoacoustic laser detector. Despite precautions to minimize physical perturbation to seedlings while setting-up, ethylene production in air was faster during the first 6h than later, in association with a small temporary swelling of the roots. When roots were switched from air (20–8kPa O2) to 3 or 5kPa O2 after 6h, ethylene production increased within 2—3 h. When, the roots were returned to air 16 h later, ethylene production decreased within 2—3 h. The presence of 10kPa CO2 did not interfere with the effect of 3kPa O2. Transferring roots from air to 12–5kPa did not change ethylene production, while a reduction to 1 kPa O2 induced a small increase. The extra ethylene formed in 3 and 5 kPa O2 was associated with plagiotropism, swelling, root hair production, and after 72 h, increased amounts of intercellular space (aerenchyma) in the root cortex. Root extension was also slowed down, but the pattern of response to oxygen shortage did not always match that of ethylene production. On return to air, subsequent growth patterns became normal within a few hours. In the complete absence of oxygen, no ethylene production was detected, even when anaerobic roots were returned to air after 16 h.  相似文献   
70.
Responses of individual roots of the widely cultivated cactus Opuntia ficus-indica to salinity stress were evaluated using a split-root system. Three roots from a plant with at least 20 roots were isolated from the remainder of the root system and exposed to 0, 30 or 100 mol m-3 NaCl for up to 28 d. Cortical cells became shorter and lateral root development was substantially reduced as salinity increased. Compared with the control, the increase in dry weight for the isolated roots was reduced 40% by 30 mol m-3 NaCl and 93% by 100mol m-3 NaCl. The sodium content of roots increased only two-fold with increasing salinity. Respiration rates of roots exposed to 30 or 100 mol m-3 NaCl were higher than those of the control. Carbon accumulation in roots measured 2 d after exposing shoots to 14CO2 was not initially affected by 30 mol m-3 NaCl but was substantially reduced at 100 mol m-3 NaCl. Thus, roots exposed to short periods of moderate salinity stress maintained sufficient carbon sink strength for continued growth of the roots. Moreover, increased salinity led to decreased efficiency of carbon usage for the expansion of root surface area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号