首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1536篇
  免费   187篇
  国内免费   362篇
  2024年   8篇
  2023年   44篇
  2022年   41篇
  2021年   41篇
  2020年   56篇
  2019年   65篇
  2018年   68篇
  2017年   72篇
  2016年   80篇
  2015年   63篇
  2014年   75篇
  2013年   74篇
  2012年   66篇
  2011年   63篇
  2010年   62篇
  2009年   79篇
  2008年   114篇
  2007年   138篇
  2006年   84篇
  2005年   87篇
  2004年   99篇
  2003年   85篇
  2002年   73篇
  2001年   68篇
  2000年   53篇
  1999年   48篇
  1998年   53篇
  1997年   31篇
  1996年   27篇
  1995年   22篇
  1994年   12篇
  1993年   12篇
  1992年   12篇
  1991年   19篇
  1990年   16篇
  1989年   8篇
  1988年   11篇
  1987年   7篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1978年   3篇
  1976年   2篇
  1965年   1篇
  1962年   1篇
  1958年   1篇
排序方式: 共有2085条查询结果,搜索用时 656 毫秒
141.
The effect of elevated carbon dioxide (600±50 cm3 m−3; C600) on growth performance, biomass production, and photosynthesis of Cenchrus ciliaris L. cv. 3108 was studied. This crop responded significantly by plant height, leaf length and width, and biomass production under C600. Leaf area index increased triple fold in the crops grown in the open top chamber with C600. The biomass production in term of fresh and dry biomass accumulation increased by 134.35 (fresh) and 193.34 (dry) % over the control (C360) condition where the crops were grown for 20 d. The rate of photosynthesis and stomatal conductance increased by 24.51 and 46.33 %, respectively, in C600 over C360 plants. In comparison with C360, the rate of transpiration decreased by 6.8 % under C600. Long-term exposure (120 d) to C600 enhanced photosynthetic water use efficiency by 34 %. Also the contents of chlorophylls a and b significantly increased in C600. Thus C. ciliaris grown in C600 throughout the crop season may produce more fodder in terms of green biomass.  相似文献   
142.
Groups of Actinidia deliciosa A. Chev. C.F. Liang et A.R. Ferguson var. deliciosa kiwifruit plants were subjected to soil water shortage (D), while other groups were well irrigated (I). Variations in chlorophyll (Chl) a fluorescence indices and leaf gas exchange were determined once plants were severely stressed (25 d after the beginning of the D-cycle). Daily maximum values of photosynthetic photon flux density (PPFD) were ca. 1 650 μmol(photon) m−2 s−1, while air temperatures peaked at 34.6 °C. High irradiance per se did not greatly affect the efficiency of photosystem (PS) 2, but predisposed its synergistic reduction by D co-occurrence. Fluorescence showed transient photodamage of PS2 with a complete recovery in the afternoon in both D and I plants. Upon re-watering the efficiency of PS2 was suboptimal (95 %) at day 2 after irrigation was reinitiated. At early morning of the day 5 of re-watering, photosynthesis and stomatal conductance recovered at about 95 and 80 % of I vines, respectively, indicating some after-stress effect on stomatal aperture. Once excessive photons reached PS2, the thermal dissipation of surplus excitation energy was the main strategy to save the photosynthetic apparatus and to optimize carbon fixation. The rather prompt recovery of both Chl a fluorescence indices and net photosynthetic rate during re-watering indicated that kiwifruit photosynthetic apparatus is prepared to cope with temporary water shortage under Mediterranean-type-climates.  相似文献   
143.
H. Yu  J.-T. Li 《Photosynthetica》2007,45(2):312-316
We found differences between true leaves (TL) and phyllodes (Ph) during ontogeny of Acacia mangium plants as reflected in chlorophyll (Chl) and carotenoid contents, gas exchange, Chl fluorescence, and growth. The production of TL enhanced the relative growth rate of the A. mangium seedlings, allowing the plants to accumulate enough dry biomass for later growth, while the production of thicker Ph in the later growth stage of A. mangium could help plants to cope with higher irradiance in their natural growth conditions.  相似文献   
144.
Thick sun leaves have a larger construction cost per unit leaf area than thin shade leaves. To re-evaluate the adaptive roles of sun and shade leaves, we compared the photosynthetic benefits relative to the construction cost of the leaves. We drew photosynthetically active radiation (PAR)-response curves using the leaf-mass-based photosynthetic rate to reflect the cost. The dark respiration rates of the sun and shade leaves of mulberry (Morus bombycis Koidzumi) seedlings did not differ significantly. At irradiances below 250 μmol m−2 s−1, the shade leaves tended to have a significantly larger net photosynthetic rate (P N) than the sun leaves. At irradiances above 250 μmol m−2 s−1, the P N did not differ significantly. The curves indicate that plants with thin shade leaves have a larger daily CO2 assimilation rate per construction cost than those with thick sun leaves, even in an open habitat. These results are consistently explained by a simple model of PAR extinction in a leaf. We must target factors other than the effective assimilation when we consider the adaptive roles of thick sun leaves.  相似文献   
145.
独叶草的光合生理生态特性   总被引:4,自引:0,他引:4  
李育花  任坚毅  林玥  刘喆  刘晓  岳明 《生态学杂志》2007,26(7):1038-1042
应用CI-301PS便携式光合测定仪对独叶草(Kingdonia uniflora)营养叶的光合生理生态特征进行了研究.结果表明:独叶草的净光合速率(Pn)日变化曲线呈双峰型,峰值出现在13:30和16:30左右,具有明显的光合"午休"现象;其叶片的蒸腾速率(Tr),水分利用率(WUE)的变化也呈双峰型.自然条件下,独叶草叶片净光合速率与光合有效辐射(PAR)、蒸腾速率、气孔导度(Gs)之间都具有多项式回归关系,R2分别为0.2082、0.2016和0.0582(n=129,P<0.05),但独叶草叶片净光合速率与空气温度(Ta)相关性不显著(P>0.05).独叶草叶片的光补偿点(LCP)、光饱和点(LSP)分别为14.93和215.76 μmol·m-2·s-1,只能适应较窄的光照环境.  相似文献   
146.
新疆植被生产力与叶面积指数的变化及其对气候的响应   总被引:7,自引:0,他引:7  
丹利  季劲钧  马柱国 《生态学报》2007,27(9):3582-3592
利用美国探路者卫星遥感资料AVHRR LAI和全球生态模式CASA给出的植被净初级生产力资料(NPP)对新疆地区1982~2000年的植被时空变化进行了定量分析,结果表明新疆地区的LAI和NPP的空间分布严格受水分的制约,与气温呈负相关,表现出干旱内陆地区植被受降水控制的地带特征。相对于20世纪80年代,90年代整个新疆出现了变暖的趋势,降水基本也呈现增加的趋势,在42°N以北地区暖湿转型尤其明显,与这种气候型相对应,植被出现了明显的增加趋势,NPP最大增幅可达45gCm-2a-1。但植被对气温和降水的年际变化响应不一样,降水主要是影响植被峰值的起落,而植被在总体演变趋势上却主要受气温控制,3个分区1984~2000年的气温明显上升,而降水变化趋势不明显,植被受气温控制出现了显著的上升趋势(P<0.01)。  相似文献   
147.
Liao Yan  Chen Guizhu 《生态学报》2007,(6):2208-2214
The impact of salinity on three arboreal mangrove plants, Sonneratia apetala (Sa), S. caseolaris (Sc) and Rhizophora stylosa (Rs), was studied. The three mangrove species were treated with different salinity levels over a three-month period. The response and adaptation of these three mangrove species to salinity were shown to be different. Net photosynthesis rate, stomata conductance and transpiration rate of leaves decreased and soluble sugar content in leaves increased, with salt concentration in all three mangrove species. The malondial dehyde (MDA) content in stems and leaves of Sa and Sc somewhat decreased when the salinity was lower than 10, but rapidly increased with increasing salt concentration. The MDA content in stems and leaves of Rs increased only when salinity was greater than 40. No changes were observed in the MDA content of roots in the three mangrove species. The adaptabilities of Sa and Sc to salt tolerance were limited. The more salt tolerant the mangrove Rs, the more likely the free oxygen radicals were eliminated through the increase in activity of superoxide dismutase (SOD). Results of this experiment identified salinity levels best suited for the growth and metabolism of the species, which provides information necessary for maintaining mangrove forestation along the South China coast.  相似文献   
148.
The results of multiyear studies of gas exchange in intact attached leaves of several willow species (Salix sp.) were analyzed. Measurements were performed with a portable Li-6400 infrared gas analyzer both on plants in their natural environment and on rooted cuttings grown in a greenhouse. Individual attached leaves were placed into the leaf chamber where climatic conditions were either similar to or different from those outside the chamber. The maximal rates of net photosynthesis (P n) and transpiration (E) were only observed with the provision that the environmental variables inside and outside the chamber were identical. On rainy or cloudy days, the P n and E values observed under optimum conditions inside the leaf chamber were lower than their potential maxima by 12–18% and 35–45%, respectively. Deviation of temperature in the chamber by 5–7°C from the external level and fluctuations of ambient temperature affected P n but not E rates of tested leaves. Variations in relative air humidity in the chamber directly influenced E but had no effect on P n of attached leaves. It was shown that the maximum rates of gas exchange in the attached willow leaf could be only attained by providing optimum conditions for the whole plant.  相似文献   
149.
West Coast prairies in the US are an endangered ecosystem, and effective conservation will require an understanding of how changing climate will impact nutrient cycling and availability. We examined how seasonal patterns and micro-heterogeneity in edaphic conditions (% moisture, total organic carbon, % clay, pH, and inorganic nitrogen and phosphorus) control carbon, nitrogen, and phosphorus cycling in an upland prairie in western Oregon, USA. Across the prairie, we collected soils seasonally and measured microbial respiration, net nitrogen mineralization, net nitrification, and phosphorus availability under field conditions and under experimentally varied temperature and moisture treatments. The response variables differed in the degree of temperature and moisture limitation within seasons and how these factors varied across sampling sites. In general, we found that microbial respiration was limited by low soil moisture year-round and by low temperatures in the winter. Net nitrogen mineralization and net nitrification were never limited by temperature, but both were limited by excessive soil moisture in winter, and net nitrification was also inhibited by low soil moisture in the summer. Factors that enhanced microbial respiration tended to decrease soil phosphorus availability. Edaphic factors explained 76% of the seasonal and spatial variation in microbial respiration, 35% of the variation in phosphorus availability, and 29% of the variation in net nitrification. Much of the variation in net nitrogen mineralization remained unexplained (R 2 = 0.19). This study, for the first time, demonstrates the complex seasonal controls over nutrient cycling in a Pacific Northwest prairie.  相似文献   
150.
Abstract Climate change is predicted to bring about a water level (WL) draw-down in boreal peatlands. This study aimed to assess the effect of WL on the carbon dioxide (CO2) dynamics of a boreal oligotrophic fen ecosystem and its components; Sphagnum mosses, sedges, dwarf shrubs and the underlying peat. We measured CO2 exchange with closed chambers during four growing seasons in a study site that comprised different vegetation treatments. WL gradient in the site was broadened by surrounding half of the site with a shallow ditch that lowered the WL by 10–25 cm. We modeled gross photosynthesis (P G) and ecosystem respiration (R ECO) and simulated the CO2 exchange in three WL conditions: prevailing and WL draw-down scenarios of 14 and 22 cm. WL draw-down both reduced the P G and increased the R ECO, thus leading to a smaller net CO2 uptake in the ecosystem. Of the different components, Sphagnum mosses were most sensitive to WL draw-down and their physiological activities almost ceased. Vascular plant CO2 exchange, en bloc, hardly changed but whereas sedges contributed twice as much to the CO2 exchange as shrubs in the prevailing conditions, the situation was reversed in the WL draw-down scenarios. Peat respiration was the biggest component in R ECO in all WL conditions and the increase in R ECO following the WL draw-down was due to the increase in peat respiration. The results imply that functional diversity buffers the ecosystem against environmental variability and that in the long term, WL draw-down changes the vegetation composition of boreal fens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号