首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2162篇
  免费   136篇
  国内免费   62篇
  2360篇
  2023年   16篇
  2022年   25篇
  2021年   29篇
  2020年   31篇
  2019年   80篇
  2018年   79篇
  2017年   105篇
  2016年   62篇
  2015年   59篇
  2014年   155篇
  2013年   179篇
  2012年   62篇
  2011年   55篇
  2010年   59篇
  2009年   99篇
  2008年   110篇
  2007年   112篇
  2006年   87篇
  2005年   80篇
  2004年   73篇
  2003年   61篇
  2002年   51篇
  2001年   60篇
  2000年   51篇
  1999年   43篇
  1998年   36篇
  1997年   39篇
  1996年   35篇
  1995年   28篇
  1994年   33篇
  1993年   42篇
  1992年   32篇
  1991年   30篇
  1990年   20篇
  1989年   25篇
  1988年   17篇
  1987年   16篇
  1986年   23篇
  1985年   20篇
  1984年   22篇
  1983年   23篇
  1982年   19篇
  1981年   11篇
  1980年   12篇
  1979年   12篇
  1977年   8篇
  1976年   4篇
  1975年   7篇
  1974年   7篇
  1971年   4篇
排序方式: 共有2360条查询结果,搜索用时 15 毫秒
61.
The phenotypic variation and response of plants to water stress were studied in a field trial in populations of wild barley, Hordeum spontaneum Koch. from Israel and Turkmenistan. Populations from the species distributional core and periphery were compared and contrasted for phenotypic variation in 16 phenological and morphological traits. The peripheral populations (six) were found to be phenotypically more variable and more resistant to water stress than core populations (12). The association of water-stress resistance with high phenotypic variability gives support to the hypothesis that populations that are genetically more variable are better adapted or pre-adapted to environmental changes and are thus valuable for conservation.  相似文献   
62.
A comprehensive continuum model of solid tumor evolution and development is investigated in detail numerically, both under the assumption of spherical symmetry and for arbitrary two-dimensional growth. The level set approach is used to obtain solutions for a recently developed multi-cell transport model formulated as a moving boundary problem for the evolution of the tumor. The model represents both the avascular and the vascular phase of growth, and is able to simulate when the transition occurs; progressive formation of a necrotic core and a rim structure in the tumor during the avascular phase are also captured. In terms of transport processes, the interaction of the tumor with the surrounding tissue is realistically incorporated. The two-dimensional simulation results are presented for different initial configurations. The computational framework, based on a Cartesian mesh/narrow band level-set method, can be applied to similar models that require the solution of coupled advection-diffusion equations with a moving boundary inside a fixed domain. The solution algorithm is designed so that extension to three-dimensional simulations is straightforward.  相似文献   
63.
A three-dimensional (3D) multilayer model based on the skin physical structure is developed to investigate the transient thermal response of human skin subject to laser heating. The temperature distribution of the skin is modeled by the bioheat transfer equation, and the influence of laser heating is expressed as a source term where the strength of the source is a product of a Gaussian shaped incident irradiance, an exponentially shaped axial attenuation, and a time function. The water evaporation and diffusion is included in the model by adding two terms regarding the heat loss due to the evaporation and diffusion, where the rate of water evaporation is determined based on the theory of laminar boundary layer. Cryogen spray cooling (CSC) in laser therapy is studied, as well as its effect on the skin thermal response. The time-dependent equation is discretized using the finite difference method with the Crank–Nicholson scheme and the stability of the numerical method is analyzed. The large sparse linear system resulted from discretizing the governing partial differential equation is solved by a GMRES solver and the expected simulation results are obtained.  相似文献   
64.
In total hip arthroplasty and particularly in revision surgery, computer assisted pre-operative prediction of the best possible anchorage strategy for implant fixation would be a great help to the surgeon. Computer simulation relies on validated numerical models. In the current study, three density–elasticity relationships (No. 1–3) from the literature for inhomogeneous material parameter assignment from CT data in automated finite element (FE) modeling of long bones were evaluated for their suitability for FE modeling of human pelvic bone. Numerical modal analysis was conducted on 10 FE models of hemipelvic bone specimens and compared to the gold standard provided by experimental modal analysis results from a previous in-vitro study on the same specimens. Overall, calculated resonance frequencies came out lower than measured values. Magnitude of mean relative deviation of numerical resonance frequencies with regard to measured values is lowest for the density–elasticity relationship No. 3 (−15.9%) and considerably higher for both density–elasticity relationships No. 1 (−41.1%) and No. 2 (−45.0%). Mean MAC values over all specimens amount to 77.8% (No. 1), 78.5% (No. 2), and 83.0% (No. 3). MAC results show, that mode shapes are only slightly influenced by material distribution. Calculated resonance frequencies are generally lower than measured values, which indicates, that numerical models lack stiffness. Even when using the best suited (No. 3) out of three investigated density–elasticity relationships, in FE modeling of pelvic bone a considerable underestimation of model stiffness has to be taken into account.  相似文献   
65.
66.
The microbial population dynamics on apples cv. Golden Delicious were analysed every 15 days between bud and harvest in a fully replicated experiment in northern Spain in 1994 and 1995. The total microbial populations varied with developmental stage, and with prevailing climatic conditions. The predominant mycroflora were the filamentous fungi Cladosporium and Alternaria spp. and white and pink yeasts. Other genera isolated included mainly species of Epicoccum, Fusarium and Acremonium. However, the most important post-harvest pathogens Penicillium expansum and Botrytis cinerea were seldom isolated from ripening apples. Maximum total filamentous fungal populations occurred after fruit set and during early ripening [2 × 104cfu (colony-forming units) g-1 approximately] while those of bacteria were maximum at bud stage (3.5 × 105and 3.0 × 104 cfu g-1 in 1994 and 1995 respectively). White yeasts were more numerous than pink yeasts. Endophytic infection of apple buds by Alternaria spp., responsible for core rot, was found in almost all bud tissue. By contrast, Cladosporium spp. were initially isolated later from 12.5–50% of tissue samples during blooming and fruit set. The impact of a four-spray fungicide regime during apple development significantly decreased the total filamentous fungal populations in both years, and that of Cladosporium spp. in 1994. However, bacterial populations were often higher on apples from fungicide-treated plots. Fungicide sprays decreased populations of Cladosporium, Alternaria and white yeasts for a maximum of up to 15–30 days after application. Fungicide application had little effect on endophytic infection of apples by Alternaria spp. between bud and harvest.  相似文献   
67.
Mosquitoes (Diptera: Culicidae) are major vectors of numerous infectious agents. Compounds in mosquito saliva not only facilitate blood-feeding, but may also have an impact upon the immune system of vertebrate hosts. Consequently, the exposure to mosquito saliva may influence pathogen transmission, establishment and disease development. Using two medically important vector mosquitoes, Aedes aegypti (L.) and Culex quinquefasciatus Say, we examined the effects of mosquito saliva on immune cells of host mice. After antigen-specific or non-specific stimulation, murine splenocyte proliferation and production of both Th1 and Th2 cytokines were significantly reduced in the presence of salivary gland extract (SGE) from Ae. aegypti, but not SGE from Cx. quinquefasciatus. T cell populations were highly susceptible to this suppression, showing increased mortality and reduced division rates - judged by flow cytometric analyses. Evidently these two culicine mosquitoes differ in their host immunomodulatory activities.  相似文献   
68.
Snakes are a particularly threatened vertebrate taxon, with distributions of many species and populations becoming increasingly fragmented. At present, little is known about the degree of genetic differentiation that exists between isolated populations even though such information may be critical to their survival and conservation. As an example of how recently developed RAPD genetic markers can be used in conservation genetics, we present preliminary results from a study which used these DNA-based markers to assess population divergence in two threatened Canadian snakes, the black rat snake ( Elaphe o. obsoleta ) and the eastern massasauga rattlesnake ( Sistrurus c. catenatus ). We present information on the levels of variation and reliability of amplification for fragments generated from five primers. We then use a recently developed analytical technique to estimate levels of nucleotide diversity within populations and sequence divergence between populations. Our results show that intrapopulation levels of divergence as estimated by the methods of Clark & Lanigan ( Molecular Biology and Evolution 1993, 10 , 1096–1111) approximate those found for mtDNA in vertebrates and that diversity between snake populations is small and non-significant when tested using randomization procedures. Thus, our study provides an example of how RAPDs can be applied to conservation genetic studies of vertebrates and suggest that the snake populations we examined have only recently become isolated and maybe considered genetically equivalent from a conservation perspective, although this conclusion needs to be confirmed with other DNA-based markers.  相似文献   
69.
The increased persistence of predator–prey systems when interactions are distributed through the space has been acknowledged by both empirical and theoretical studies. One salient feature of predator–prey interactions in heterogeneous space, for example, is the existence of cycles with reduced amplitude when compared with a homogeneous landscape. Although the role of spatial interactions in shaping the dynamics of predator–prey systems has been extensively studied, still very few works have focused on the effects of habitat loss and fragmentation on these systems. In this work, we study the population dynamics of a predator–prey system in a single finite habitat with flux at the boundaries. Species movement and growth are described through a reaction–diffusion model with Rosenzweig–MacArthur type local interactions. Conforming with the existing literature, we find that the reduction of habitat size, or increasing of species movement rates equivalently, has the potential to decrease the amplitude of oscillations and even bring the system to a steady coexistence equilibrium above a threshold. We observe, however, situations in which this trend is reversed. This occurs when species movement rates and response at patch boundaries interact to induce non-trivial patterns of species distributions. These distributions are characterized by anti-correlation between predator and prey, creating then spatial refugia for prey. Our results highlight the role of population loss through habitat boundaries in determining the dynamics of predator–prey interactions.  相似文献   
70.
The biomechanical events which accompany functional loading of the human mandible are not fully understood. The techniques normally used to record them are highly invasive. Computer modelling offers a promising alternative approach in this regard, with the additional ability to predict regional stresses and strains in inaccessible locations. In this study, we built two three-dimensional finite element (FE) models of a human mandible reconstructed from tomographs of a dry dentate jaw. The first model was used for a complete mechanical characterization of physical events. It also provided comparative data for the second model, which had an increased vertical corpus depth. In both cases, boundary conditions included rigid restraints at the first right molar and endosteal cortical surfaces of the articular eminences of temporal bones. Groups of parallel multiple vectors simulated individual masticatory muscle loads. The models were solved for displacements, stresses, strains, and forces. The simulated muscle loads in the first model deformed the mandible helically upward and toward its right (working) side. The highest principal stresses occurred at the bite point, anterior aspects of the coronoid processes, symphyseal region, and right and left sides of the mandibular corpus. In general, the observed principal stresses and strains were highest on the periosteal cortical surface and alveolar bone. At the symphyseal region, maximum principal stresses and strains were highest on the lower lingual mandibular aspect, whereas minimum principal stresses and strains were highest on its upper labial side. Subcondylar principal strains and condylar forces were higher on the left (balancing or nonbiting) side than on the right mandibular side, with condylar forces more concentrated on the anteromedial aspect of the working-side condyle and on the central and lateral aspects of the left. When compared with in vivo strain data from macaques during comparable biting events, the predictive strain values from the first model were qualitatively similar. In the second model, the reduced tensile stress on the working-side, and decreased shear stress bilaterally, confirmed that lower stresses occurred on the lower mandibular border with increased jaw depth. Our results suggested that although the mandible behaved in a beam-like manner, its corpus acted more like a combination of open and closed cross sections due to the presence of tooth sockets, at least for the task modelled.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号