首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   49篇
  国内免费   46篇
  2024年   1篇
  2023年   26篇
  2022年   13篇
  2021年   29篇
  2020年   31篇
  2019年   25篇
  2018年   19篇
  2017年   14篇
  2016年   25篇
  2015年   23篇
  2014年   25篇
  2013年   43篇
  2012年   24篇
  2011年   35篇
  2010年   22篇
  2009年   35篇
  2008年   43篇
  2007年   42篇
  2006年   35篇
  2005年   29篇
  2004年   28篇
  2003年   26篇
  2002年   24篇
  2001年   19篇
  2000年   15篇
  1999年   13篇
  1998年   9篇
  1997年   14篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   1篇
排序方式: 共有742条查询结果,搜索用时 281 毫秒
721.
It is increasingly apparent that nature evolved peroxiredoxins not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Here we ask whether the H2O2 sensing role of Prx can be exploited to develop probes that allow to monitor intracellular H2O2 levels with unprecedented sensitivity. Indeed, simple gel shift assays visualizing the oxidation of endogenous 2-Cys peroxiredoxins have already been used to detect subtle changes in intracellular H2O2 concentration. The challenge however is to create a genetically encoded probe that offers real-time measurements of H2O2 levels in intact cells via the Prx oxidation state. We discuss potential design strategies for Prx-based probes based on either the redox-sensitive fluorophore roGFP or the conformation-sensitive fluorophore cpYFP. Furthermore, we outline the structural and chemical complexities which need to be addressed when using Prx as a sensing moiety for H2O2 probes. We suggest experimental strategies to investigate the influence of these complexities on probe behavior. In doing so, we hope to stimulate the development of Prx-based probes which may spearhead the further study of cellular H2O2 homeostasis and Prx signaling.  相似文献   
722.
Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products.  相似文献   
723.
《Analytical biochemistry》2009,386(2):194-338
To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used.  相似文献   
724.
Avian influenza is an acute infectious disease caused by the avian influenza virus (AIV), which has caused enormous economic losses and posed considerable threats to public health. This study aimed to demonstrate an immunosensor based on dispersion turning point long-period fiber grating (DTP-LPFG) integrated with graphene oxide (GO) for the specific detection of a type of AIV H5N1 virus. LPFG was designed to work at DTP, whose dual-peak spacing was very high sensitive to a refractive index. Anti-H5N1 monoclonal antibodies were covalently bonded with the GO film on the fiber surface, thus constructing an immunosensor for the label-free and specific detection of the H5N1 virus. The proposed method was capable of the reliable detection of H5N1 virus with the limit of detection as low as ~1.05 ng/ml within the large range of 1 ng/mL to 25 µg/mL. More importantly, immunoassays of the whole H5N1 virus in clinical samples further confirmed that the GO-integrated DTP-LPFG immunosensor showed very high specificity to the H5N1 virus and demonstrated great potential for clinical use.  相似文献   
725.
We present an electrochemical and optical characterization of 5,10,15,20-tetraphenylporphyrin tin(IV) dichloride (Sn–tpp) in terms of its potential use as a hybrid proteins’ label. Our research comprised Sn–tpp and Sn–tpp in the presence of model proteins selected as to mimic a receptor or surface blocking agents: bovine serum albumin, ovalbumin, and immunoglobulin G. In the course of the study, we determined optimal conditions for analysis by means of differential pulse voltammetry, ultraviolet–visible spectrophotometry, and spectrofluorimetry. In electrochemical detection, the influence of the working electrode, solvent, and supporting electrolyte was examined. Displacements of the received signals along the potential axis (a shift of the potential) and changes in signal intensities due to the addition of proteins were observed and analyzed. Simultaneously, the suitability of Sn–tpp as a label in optical detection mode was assessed by using spectroscopic techniques. The obtained results prove Sn–tpp to be applicable in dual and triple detection systems. Such an approach will improve the reliability of the analysis and, at the same time, will allow for widening the range of the linear response with some overlapping ranges of concentrations.  相似文献   
726.
The appearance of antibodies in blood is a critical signal to suggest the infection. A rapid and accurate detection method for the antibody is significant to the disease diagnosis, especially for the epidemic. To this end, a highly sensitive whispering-gallery-mode (WGM) optical testing kit is designed and fabricated for detecting the specific immunoglobulin antibodies. The key component of the kit is a silica self-assembled microsphere decorated with the nucleocapsid proteins (N-proteins) of the SARS-CoV-2 virus. After the N-protein antibody immunoglobulin G (N-IgG) and immunoglobulin M (N-IgM) solutions being injected into the kit, the WGM red-shifts due to the antigen–antibody reaction. The wavelength displacement rates are proportional to the concentrations of these two antibodies from 1 to 100 μg/mL. A good specificity of the kit is demonstrated by the nonspecific human immunoglobulin G (H-IgG) and immunoglobulin M (H-IgM).  相似文献   
727.
Endo-1,3-β-glucanase from Cellulosimicrobium cellulans DK-1 has a carbohydrate-binding module (CBM-DK) at the C-terminal side of a catalytic domain. Out of the imperfect tandem α-, β-, and γ-repeats in CBM-DK, the α-repeat primarily contributes to β-glucan binding. This unique feature is derived from Trp273 in α-repeat, whose corresponding residues in β- and γ-repeats are Asp314 and Gly358, respectively. In this study, we generated Trp-switched mutants, W273A/D314W, D270A/W273A/D314W, W273A/G358W, and D270A/W273A/G358W, and analyzed their binding abilities toward laminarioligosaccharides and laminarin. While the binding affinities of D270A/W273A and W273A mutants were either lost or much lower than that of the wild-type, those of Trp-switched mutants recovered, indicating that a Trp introduction in β- or γ-repeat can substitute the α-repeat by primarily contributing to β-glucan binding. Thus, we have successfully engineered a CBM-DK that binds to laminarin by a mechanism different from that of the wild-type, but with similar affinity.  相似文献   
728.
We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2]2+, where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2]2+ acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2]2+ were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10−12 to 1 × 10−6 M with a detection limit of 1.99 × 10−13 M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied.  相似文献   
729.
730.
群体感应(quorum sensing,QS)是一种依赖菌群密度的细菌交流系统。在探究细菌群体感应系统的调控机制中,对QS信号分子的鉴别和检测是不可或缺的环节,其对生命科学、药学等领域涉及细菌等微生物的相互作用、高效检测和作用机制解析等具有重要的参考意义。本文在总结不同类型细菌QS信号分子来源和结构的基础上,对QS信号分子的光电检测方法和技术进行了综述,重点对光电传感检测的敏感介质、传感界面、传感机制及测试效果进行探讨,同时关注了将微流控芯片分析技术应用于细菌QS信号分子原位监测的相关研究进展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号