首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   49篇
  国内免费   46篇
  2024年   2篇
  2023年   26篇
  2022年   13篇
  2021年   29篇
  2020年   32篇
  2019年   25篇
  2018年   19篇
  2017年   14篇
  2016年   25篇
  2015年   23篇
  2014年   25篇
  2013年   43篇
  2012年   24篇
  2011年   35篇
  2010年   22篇
  2009年   35篇
  2008年   43篇
  2007年   42篇
  2006年   35篇
  2005年   29篇
  2004年   28篇
  2003年   26篇
  2002年   24篇
  2001年   19篇
  2000年   15篇
  1999年   13篇
  1998年   9篇
  1997年   14篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   1篇
排序方式: 共有744条查询结果,搜索用时 15 毫秒
651.
Cysteine is a nonessential aminoacid, meaning that cysteine can be made in the human body. It is one of the few amino acids that contain sulfur. This allows cysteine to bond in a special way and maintain the structures of proteins in the body. Cysteine strengthens the protective lining of the stomach and intestines, which may help prevent damage caused by aspirin and similar drugs. In addition, cysteine may play an important role in the communication between immune system cells.

In this study, glassy carbon electrodes modified with mercury (Hg) were used as working electrode. Mercury thin film on glassy carbon electrode was deposited by holding the electrode potential at ?0.7 V; the measurement period for the coating process was 2 minutes. pH and temperature effects on the electrode response were carried out by working at different pHs and temperatures. The calibration graph for cysteine was drawn in the range of 5–120 μM cysteine. Repeatability and interferences studies were investigated. GSH had an interference effect of about 13% of cysteine response. Finally, the sensor was applied to real samples for cysteine determination and the method was validated by Ellman's reagent.  相似文献   
652.
The kinetics of glucoamylase-catalyzed hydrolysis of starch granules from six different botanical sources (rice, wheat, maize, cassava, sweet potato, and potato) was studied by the use of an electrochemical glucose sensor. A higher rate of hydrolysis was obtained as a smaller size of starch granules was used. The adsorbed amount of glucoamylase on the granule surface per unit area did not vary very much with the type of starch granules examined, while the catalytic constants of the adsorbed enzyme (k 0) were determined to be 23.3±4.4, 14.8±6.0, 6.2±1.8, 7.1±4.1, 4.6±3.0, and 1.6±0.6 s?1 for rice, wheat, maize, cassava, sweet potato, and potato respectively, showing that k 0 was largely influenced by the type of starch granules. A comparison of the k 0-values in relation to the crystalline structure of the starch granules suggested that k 0 increases as the crystalline structure becomes dense.  相似文献   
653.
A localized surface plasmon resonance (LSPR) sensor surface was fabricated by the deposition of gold nanorods on a glass substrate and subsequent immobilization of the DNA aptamer, which specifically bind to thrombin. This LSPR aptamer sensor showed a response of 6‐nm λmax shift for protein binding with the detection limit of at least 10 pM, indicating one of the highest sensitivities achieved for thrombin detection by optical extinction LSPR. We also tested the LSPR sensor fabricated using gold bipyramid, which showed higher refractive index sensitivity than the gold nanorods, but the overall response of gold bipyramid sensor appears to be 25% less than that of the gold nanorod substrate, despite the approximately twofold higher refractive index sensitivity. XPS analysis showed that this is due to the low surface density of aptamers on the gold bipyramid compared with gold nanorods. The low surface density of the aptamers on the gold bipyramid surface may be due to the effect of shape of the nanostructure on the kinetics of aptamer monolayer formation. The small size of aptamers relative to other bioreceptors is the key to achieving high sensitivity by biosensors on the basis of LSPR, demonstrated here for protein binding. The generality of aptamer sensors for protein detection using gold nanorod and gold nanobipyramid substrates is anticipated to have a large impact in the important development of sensors toward biomarkers, environmental toxins, and warfare agents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
654.
Abstract

A novel hydrogen peroxide (H2O2) biosensor was successfully constructed, based on the immobilization of hemoglobin (Hb) on polypyrrole (PPy)-Fe3O4 and dodecyltrimethylammonium bromide (DTAB) composite ?lm-modified carbon paste electrodes (CPE). The PPy-Fe3O4 composites were synthesized in the suspension solution of Fe3O4 nanoparticles via in situ chemical oxidative polymerization under the direction of cationic surfactant cetyl trimethyl ammonium bromide. Spectroscopic and electrochemical examinations illustrated that the PPy-Fe3O4/DTAB composites were a biocompatible matrix for immobilizing Hb, which revealed high chemical stability and excellent biocompatibility. The thermodynamic, dynamic, and catalytic performance of the biosensor were analysed using cyclic voltammetry (CV). The results indicated that the PPy-Fe3O4/Hb/DTAB/CPE exhibited excellent electrocatalytic activity in the reduction of H2O2 with a high sensitivity (104 μA mM? 1). The catalytic reduction currents of H2O2 were linearly related to H2O2 concentration in the range from 2.5 μM to 60 μM with a detection limit of 0.8 μM (S/N = 3). With such superior characteristics, this biosensor for H2O2 can be potentially applied in determination of other reactive oxygen species as well. These results indicated that PPy-Fe3O4/DTAB composites are a promising matrix for bioactive molecule immobilization.  相似文献   
655.
The aim of this work was to develop a biosensor for toxic amides using whole cells of Pseudomonas. aeruginosa containing amidase activity, which catalyses the hydrolysis of amides such as acrylamide producing ammonia and the corresponding organic acid. Whole cells immobilized in several types of membrane in the presence of glutaraldehyde and an ammonium ion-selective electrode, were used for biosensor development. This biosensor exhibited a linear response in the range of 0.1–4.0×10?3 M of acrylamide, a detection limit of 4.48×10?5 M acrylamide, a response time of 55 s, a sensitivity of 58.99 mV mM?1 of acrylamide and a maximum t1/2 of 54 days. The selectivity of this biosensor towards other amides was investigated, which revealed that it cross-reacted with acetamide and formamide, but no activity was detected with phenylacetamide, p-nitrophenylacetamide and acetanilide. It was successfully used for quantification of acrylamide in real industrial effluents and recovery experiments were carried out which revealed an average substrate recovery of 93.3%. The biosensor is cheap since whole cells of P. aeruginosa can be used as source of amidase activity.  相似文献   
656.
Double-stranded calf thymus (dsCT)-DNA was electrochemically entrapped into polypyrrole-polyvinyl sulfonate (PPy-PVS) films deposited onto indium tin oxide (ITO) coated glass plates. These dsCT-DNA entrapped PPy-PVS/ITO films were characterized using cyclic voltammetry, UV-visible, Fourier transform infrared (FT-IR), scanning tunneling microscopy (STM), and electrochemical impedance measurements. Attempts made to use these dsCT-DNA entrapped PPy-PVS/ITO films for detection of 2-aminoanthracene (0.001-6.0 ppm) and 3-chlorophenol (0.01-55.0 ppm) revealed a response time of 30s and a shelf life of approximately 25 weeks when stored under desiccated conditions at 25 degrees C. The addition of salts such as Ca(2+) (250 ppm), Mg(2+) (200 ppm), Cl(-) (1560 ppm), and Na(+) (150 ppm) ions contained in water does not affect the observed amperometric response of the disposable dsCT-DNA entrapped PPy-PVS film-based electrochemical biosensor.  相似文献   
657.
A novel hybridization indicator, bis(benzimidazole)cadmium(II) dinitrate (Cd(bzim)(2)(NO(3))(2)), was utilized to develop an electrochemical DNA biosensor for the detection of a short DNA sequence related to the hepatitis B virus (HBV). The sensor relies on the immobilization and hybridization of the 21-mer single-stranded oligonucleotide from the HBV long repeat at the glassy carbon electrode (GCE). The hybridization between the probe and its complementary sequence as the target was studied by enhancement of the peak of the Cd(bzim)(2)(2+) indicator using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay time. With this approach, a sequence of the HBV could be quantified over the range from 1.49x10(-7)M to 1.06x10(-6)M, with a linear correlation of r=0.9973 and a detection limit of 8.4x10(-8)M. The Cd(bzim)(2)(2+) signal observed from the probe sequence before and after hybridization with a four-base mismatch containing sequence was lower than that observed after hybridization with a complementary sequence, showing good selectivity. These results demonstrate that the Cd(bzim)(2)(2+) indicator provides great promise for the rapid and specific measurement of the target DNA.  相似文献   
658.
成簇规律间隔短回文重复序列/成簇规律间隔短回文重复序列相关蛋白 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein,CRISPR/Cas) 因高效的靶向结合和可编程性,已被开发为一种精准、高效、低价和高灵敏度的核酸检测工具。目前基于CRISPR-Cas体系的生物传感器在病原体核酸检测方面显示出了优良的性能,受到了人们的广泛关注,这种新型的病原体核酸检测有望替代传统的病原体检测方法。文中就基于CRISPR/Cas体系的生物传感器在病原体核酸检测中的最新研究进展进行综述。  相似文献   
659.
A biosensor for trace metal ions based on horseradish peroxidase (HRP) immobilized on maize tassel-multiwalled carbon nanotube (MT-MWCNT) through electrostatic interactions is described herein. The biosensor was characterized using Fourier transform infrared (FTIR), UV–vis spectrometry, voltammetric and amperometric methods. The FTIR and UV–vis results inferred that HRP was not denatured during its immobilization on MT-MWCNT composite. The biosensing principle was based on the determination of the cathodic responses of the immobilized HRP to H2O2, before and after incubation in trace metal standard solutions. Under optimum conditions, the inhibition rates of trace metals were proportional to their concentrations in the range of 0.092–0.55 mg L−1, 0.068–2 mg L−1 for Pb2+ and Cu2+ respectively. The limits of detection were 2.5 μg L−1 for Pb2+ and 4.2 μg L−1 for Cu2+. Representative Dixon and Cornish-Bowden plots were used to deduce the mode of inhibition induced by the trace metal ions. The inhibition was reversible and mixed for both metal ions. Furthermore, the biosensor showed good stability, selectivity, repeatability and reproducibility.  相似文献   
660.
Bioelectrodes to detect immunoglobulin G (IgG) antibodies occurring in sera of patients suffering from American trypanosomiasis were assembled. The device consisted of a gold electrode modified with a thiol sensitized with parasite proteins. The assemblage was accomplished by adsorbing IgG antibodies from confirmed infected patients followed by adsorption of anti-human IgG labeled with a redox enzyme. The appliance was used as a working electrode in a three-electrode cell containing a soluble charge-transfer mediator, also behaving as enzyme cosubstrate. The method is based on the measurement of the catalytic current after addition of the enzyme substrate, occurring when a positive serum is used to build up the biosensor. The discrimination efficiency between positive and negative sera was 100% for the samples studied. A 0.9525 correlation coefficient was obtained for results acquired by using this approach and one commercial diagnostic kit. The reproducibility, evaluated by the percentage coefficient of variation, varied between 7 and 20%. The sensitivity was 12.4 ng mL(-1) IgG, which is in the same order as that obtained with the commercial kit. Stability of the device was studied for a 7-day period and the results showed no significant change (p = 0.218). Leishmaniasic sera showed cross-reactivity when total parasite homogenate was used as antigen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号