首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   49篇
  国内免费   46篇
  2024年   2篇
  2023年   26篇
  2022年   13篇
  2021年   29篇
  2020年   32篇
  2019年   25篇
  2018年   19篇
  2017年   14篇
  2016年   25篇
  2015年   23篇
  2014年   25篇
  2013年   43篇
  2012年   24篇
  2011年   35篇
  2010年   22篇
  2009年   35篇
  2008年   43篇
  2007年   42篇
  2006年   35篇
  2005年   29篇
  2004年   28篇
  2003年   26篇
  2002年   24篇
  2001年   19篇
  2000年   15篇
  1999年   13篇
  1998年   9篇
  1997年   14篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   1篇
排序方式: 共有744条查询结果,搜索用时 20 毫秒
31.
Combining the surface modification and molecular imprinting technique, a novel piezoelectric sensing platform with excellent molecular recognition capability was established for the detection of uric acid (UA) based on the immobilization of TiO2 nanoparticles onto quartz crystal microbalance (QCM) electrode and modification of molecularly imprinted TiO2 (MIT) layer on TiO2 nanoparticles. The performance of the fabricated biosensor was evaluated, and the results indicated that the biosensor exhibited high sensitivity in UA detection, with a linear range from 0.04 to 45 μM and a limit of detection of 0.01 μM. Moreover, the biosensor presented high selectivity towards UA in comparison with other interferents. The analytical application of the UA biosensor confirmed the feasibility of UA detection in urine sample.  相似文献   
32.
细菌表面展示是将靶标蛋白质表达于细菌表面以更好地实现其功能的一种技术,它在重组细菌疫苗、生物燃料电池、全细胞催化剂和生物修复等多个领域均有广泛的应用.随着相关技术的发展,表面展示系统的各种性能被不断地改良,同时新的表面展示系统也陆续被开发和应用,使该技术得到持续的丰富和发展.本文重点关注近年研究得较多的细菌表面展示系统,主要对各类细菌表面展示系统的开发、改造和修饰,以及该技术在生物修复和生物传感器方面的应用作一综述.  相似文献   
33.
Amorphous cellulose was used as a specific carrier for the deposition of self-assembled multienzyme complexes capable of catalyzing coupled reactions. Naturally glycosylated fungal cellobiohydrolases (CBHs) of glycosyl hydrolase families 6 and 7 were specifically deposited onto the cellulose surface through their family I cellulose-binding modules (CBM). Naturally glycosylated fungal laccase was then deposited onto the preformed glycoprotein layer pretreated by ConA, through the interaction of mannosyl moieties of fungal glycoproteins with the multivalent lectin. The formation of a cellulase-ConA-laccase composite was proven by direct and indirect determination of activity of immobilized laccase. In the absence of cellulases and ConA, no laccase deposition onto the cellulose surface was observed. Finally, basidiomycetous cellobiose dehydrogenase (CDH) was deposited onto the cellulose surface through the specific interaction of its FAD domain with cellulose. The obtained paste was applied onto the surface of a Clark-type oxygen electrode and covered with a dialysis membrane. In the presence of traces of catechol or dopamine as mediators, the obtained immobilized multienzyme composite was capable of the coupled oxidation of cellulose by dissolved oxygen, thus providing the basis for a sensitive assay of the mediator. Swollen amorphous cellulose plays three different roles in the obtained biosensor as: (i) a gelforming matrix that captures the analyte and its oxidized intermediate, (ii) a specific carrier for protein self-assembly, and (iii) a source of excess substrate for a pseudo-reagent-less assay with signal amplification. The detection limit of such a tri-enzyme biosensor is 50-100 nM dopamine.  相似文献   
34.
Bacterial L-asparaginases catalyzing hydrolysis of L-asparagine to L-aspartate and ammonia, are used in medical practice for treatment of acute lymphoblastic leukemia. The long-term therapy with these preparations is accompanied by a number of side effects, which are attributed to glutaminase activity of L-asparaginase. Substrate specificity and activity of L-asparaginases are directly associated with the oligomerization process of this enzyme, which is active only as the tetramer because its active sites are located in the contact areas between monomers. The present work is devoted to homology modeling of spatial structure of L-asparaginase from Erwinia carotovora, the comparative molecular-graphic analysis of subunit interfaces, and the development of a new experimental approach for studies of enzyme oligomerization. L-Asparaginase was immobilized on a surface of CM5 optical chip of biosensor Biacore 3000, which is based on the surface plasmon resonance technology. The dissociation process of enzyme tetrameric complexes up to monomers and subsequent oligomerization process have been registered.  相似文献   
35.
The interaction of the inhibitor VJ (InhVJ), isolated from sea anemone R. macrodactylus, with different proteases was investigated using the method of biosensor analysis. The following enzymes were tested: serine proteases (trypsin, α-chymotrypsin, plasmin, thrombin, kallikrein), cysteina protease (papain) and aspartic protease (pepsin). In the rage of the concentrations studied (10–400 nM) inhibitor VJ interacted only with trypsin and α-chymotrypsin. The intermolecular complexes formation between inhibitor VJ and each of these enzymes was characterized by the following kinetic and thermodynamics parameters: KD = 7.38 × 10?8 M and 9.93 × 10?7 M for pairs InhVJ/trypsin and InhVJ/α-chymotrypsin, respectively.  相似文献   
36.
In this work, a highly sensitive biosensor for detecting cadmium ions (Cd2+) was developed based on a Cd2+-specific DNA aptamer and a hybridization chain reaction (HCR). The Cd2+ aptamer (named S0) was used to recognize Cd2+ and trigger the HCR. Without Cd2+, S0 initiated the HCR to form long nicked dsDNA structures to quench the fluorescence. Then, Cd2+ could bind with S0 to block HCR to recover fluorescence. This biosensor had high sensitivity with a detection limit of 0.36 nM and a linear range from 0 to 10 nM. Moreover, it showed a satisfactory selectivity and recovery rates.  相似文献   
37.
In this study, we present a facile and low-cost approach for detecting protein kinase A (PKA) by assembling a purpose-designed carboxyfluorescein (FAM)-labelled peptide with carboxylic carbon nanoparticles (CNPs). Fluorescence of the FAM-labelled peptide gradually decreases to a low background signal as a result of the electron transfer from CNPs to FAM-labelled peptide via the peptide, which acts as a bridge. The reaction in the sensor in the presence of adenosine 5′-triphosphate and PKA phosphorylates the substrate peptide and disrupts the electrostatic repulsive force between the CNPs and the peptide, therefore altering the spectroscopic signal of the system. The change in fluorescence signal was directly proportional to the PKA concentration in the range 0–1.8 U/ml with a detection limit of 0.04 U/ml. These results suggest that PKA activity can be effectively measured using the developed PKA biosensor. Moreover, the fluorescence biosensor was successfully used in the investigation of PKA in spiked human embryonic kidney (HEK) 293 cells lysates, indicating its potential applications in protein kinase-related biochemical fundamental research.  相似文献   
38.
Microbial biosynthesis has been extensively adapted for the production of commodity chemicals using renewable feedstocks. This study integrated metabolite biosensors into rationally designed microbial cocultures to achieve high-efficiency bioproduction of phenol from simple carbon substrate glucose. Specifically, two sets of E. coli–E. coli cocultures were first constructed for accommodation of two independent phenol biosynthesis pathways via 4-hydroxybenzoate (4HB) and tyrosine (TYR), respectively. Biosensor-assisted microbial cell selection mechanisms were subsequently incorporated into the coculture systems to address the insufficient pathway intermediate provision that limited the overall bioproduction. For the 4HB- and TYR-dependent pathways, this approach improved the phenol production by 2.3- and 3.9-fold, respectively, compared to the monoculture controls. Notably, the use of biosensor-assisted cell selection strategy in monocultures resulted in reduced phenol production, highlighting the advantage of coculture engineering for coupling with biosensing. After stepwise optimization, the phenol bioproduction yield of the engineered coculture's reached 0.057 g/g glucose. Furthermore, the coculture biosynthesis was successfully scaled up at both shake flask and bioreactor levels. Overall, the findings of this study demonstrate the outstanding potential of coupling biosensing and modular coculture engineering for advancing microbial biosynthesis of valuable molecules from renewable carbon substrates.  相似文献   
39.
On-site genetic detection needs to develop a sensitive and straightforward biosensor without special equipment, which can detect various genetic biomarkers. Hybridization chain reaction (HCR) amplifying signal isothermally could be considered as a good candidate for on-site detection. Here, we developed a novel genetic biosensor on the basis of enzyme-free dual-amplification of universal hybridization chain reaction (uHCR) and hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking DNAzyme. The uHCR is the strategy which enables simple design for multiple target detection by the introduction of target-specific trigger hairpin without changing the whole system according to a target change. Also, HRP-mimicking DNAzyme could produce a sensitive and quantitative colorimetric signal with increased stability with a limit of detection (LOD) of 5.67 nM. The universality of the uHCR biosensor was proven by the detection of four different targets (miR-21, miR-125b, KRAS-Q61K, and BRAF-V600E) for cancer diagnosis. The uHCR biosensor showed specificity that could discriminate single-nucleotide polymorphism. Moreover, the uHCR biosensor could detect targets in the diluted serum sample. Overall, the uHCR biosensor demonstrated the potential for field testing with a simple redesign without complicated steps or special equipment using a universal hairpin system and enzyme-free amplification. This strategy could enable stable and sensitive detection of a variety of targets. Therefore, it could be applied to urgent detection of various pathogens, remote diagnosis, and self-screening of diseases.  相似文献   
40.
In steroid hydroxylation system in adrenal cortex mitochondria, NADPH-adrenodoxin reductase (AR) and adrenodoxin (Adx) form a short electron-transport chain that transfers electrons from NADPH to cytochromes P-450 through FAD in AR and [2Fe-2S] cluster in Adx. The formation of [AR/Adx] complex is essential for the electron transfer mechanism in which previous studies suggested that AR tryptophan (Trp) residue(s) might be implicated. In this study, we modified AR Trps by N-bromosuccinimide (NBS) and studied AR binding to Adx by a resonant mirror biosensor. Chemical modification of tryptophans caused inhibition of electron transport. The modified protein (AR*) retained the native secondary structure but showed a lower affinity towards Adx with respect to AR. Activity measurements and fluorescence data indicated that one Trp residue of AR may be involved in the electron transferring activity of the protein. Computational analysis of AR and [AR/Adx] complex structures suggested that Trp193 and Trp420 are the residues with the highest probability to undergo NBS-modification. In particular, the modification of Trp420 hampers the correct reorientation of AR* molecule necessary to form the native [AR/Adx] complex that is catalytically essential for electron transfer from FAD in AR to [2Fe-2S] cluster in Adx. The data support an incorrect assembly of [AR*/Adx] complex as the cause of electron transport inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号