首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   131篇
  国内免费   9篇
  548篇
  2024年   5篇
  2023年   2篇
  2022年   8篇
  2021年   5篇
  2020年   34篇
  2019年   42篇
  2018年   38篇
  2017年   37篇
  2016年   40篇
  2015年   22篇
  2014年   31篇
  2013年   21篇
  2012年   18篇
  2011年   18篇
  2010年   16篇
  2009年   21篇
  2008年   24篇
  2007年   22篇
  2006年   8篇
  2005年   15篇
  2004年   13篇
  2003年   3篇
  2002年   9篇
  2001年   2篇
  2000年   8篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   8篇
  1985年   2篇
  1984年   9篇
  1983年   4篇
  1982年   5篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有548条查询结果,搜索用时 15 毫秒
31.
Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H2 per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2 mmol of H2/L/h at 20 g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H2-based mass and an electricity density of more than 3000 W h/kg of starch.  相似文献   
32.
The oxygen evolution reaction (OER), as an important process involved in water splitting and rechargeable metal–air batteries, has drawn increasing attention in the context of clean energy generation and efficient energy storage. This review concerns the progress and new discoveries in the field of Ni/Fe‐based micro/nanostructures toward electrochemical and photo‐electrochemical (PEC) water oxidation during last few years. First, toward the design and construction of new electrocatalysis, different types of current Ni/Fe‐based compounds for OER are summarized. The mechanism studies of the active phases and positions of Ni/Fe‐based micro/nanostructures are further introduced to understand the properties of catalytic active sites, which could facilitate further improving the performance of Ni/Fe‐based OER electrocatalysts. Second, splitting water using sunlight with low overpotential is another important target in making solar‐to‐hydrogen micro/nanodevices, and thus attention is then focused on the development of several important Ni/Fe‐based PEC catalysts. Third, the recent theoretical calculations on the OER mechanism during water splitting and insights into electronic structures are analyzed; finally, the future trends and perspectives are also discussed briefly.  相似文献   
33.

Background

The Mediterranean diet is a healthy diet with positive scientific evidence of preventing chronic diseases. Bioactive components support the healthy properties of the Mediterranean diet. Antioxidants and fiber, two components of the Mediterranean diet, are key functional nutrients for healthy eating and nutrition. Wine grape pomace is a rich source of these dietary constituents and may be beneficial for human health. Our hypothesis was that the intake of red wine grape pomace flour (WGPF) prepared from red wine grapes (Cabernet Sauvignon variety) reduced the metabolic syndrome in humans. To evaluate the effect of WGPF on components of metabolic syndrome we design a 16-week longitudinal intervention study. Thirty-eight males, 30–65 years of age, with at least one component of metabolic syndrome, were randomly assigned to either the intervention group (n = 25) or the control group (n = 13). At lunch, the intervention group was given 20 g of WGPF per day, which contained 10 g of dietary fiber, 822 mg of polyphenols and an antioxidant capacity of 7258 ORAC units. Both groups were asked to maintain their regular eating habits and lifestyles. Clinical evaluation, anthropometric measurements and biochemical blood analyses were done at the beginning and the end of the study.

Results

WGPF intake significantly decreased systolic and diastolic blood pressure as well as fasting glucose levels. Plasma γ-tocopherol and δ-tocopherol increased and carbonyl group in plasma protein decreased in WGPT group, significantly. No significant effect was observed for waist circumference, HDL cholesterol, triglycerides, total antioxidant capacity and vitamin C in and between groups. The group-dependent magnitude of the differences between the baseline and final postprandial insulin values and γ-tocopherol concentrations was statistically significant.

Conclusions

The consumption of WGPF-rich in fiber and polyphenol antioxidants, as a food supplement in a regular diet improves blood pressure, glycaemia and postprandial insulin. In addition, increased antioxidant defenses and decreased oxidative protein damage indicating attenuation of oxidative stress. WGPF might be a useful food ingredient for health promotion and chronic disease prevention.  相似文献   
34.
Xu QH  Wang YP  Qin MH  Fu YJ  Li ZQ  Zhang FS  Li JH 《Bioresource technology》2011,102(11):6536-6540
Deinking of old newsprint (ONP) by combining hemicellulase with laccase-mediator system (LMS) was investigated, and surface chemical composition and fiber morphology changes during the deinking process were studied by electron spectroscopy for chemical analysis (ESCA), contact angle (CA), attenuated total reflectance fourier transform infrared spectrometry (ATR-FTIR), fiber quality analyzer (FQA), and environmental scanning electronic microscopy (ESEM). Results showed that, compared to the pulp deinked with hemicellulase or LMS individually, effective residual ink concentration (ERIC) was lower for the hemicellulase/LMS-deinked pulp. This indicated that there is a synergistic deinking effect between hemicellulase and LMS. It was found that O/C ratio of the fiber surface increased and the surface coverage of lignin decreased during the hemicellulase/LMS deinking process. The contact angle of the hemicellulase/LMS-deinked pulp was lower than that of pulps deinked with each individual enzyme. ESEM observations showed that more fibrils appeared on the fiber surface due to synergistic treatment.  相似文献   
35.
When startled adult D. melanogaster react by jumping into the air and flying away. In many invertebrate species, including D. melanogaster, the "escape" (or "startle") response during the adult stage is mediated by the multi-component neuronal circuit called the Giant Fiber System (GFS). The comparative large size of the neurons, their distinctive morphology and simple connectivity make the GFS an attractive model system for studying neuronal circuitry. The GFS pathway is composed of two bilaterally symmetrical Giant Fiber (GF) interneurons whose axons descend from the brain along the midline into the thoracic ganglion via the cervical connective. In the mesothoracic neuromere (T2) of the ventral ganglia the GFs form electro-chemical synapses with 1) the large medial dendrite of the ipsilateral motorneuron (TTMn) which drives the tergotrochanteral muscle (TTM), the main extensor for the mesothoracic femur/leg, and 2) the contralateral peripherally synapsing interneuron (PSI) which in turn forms chemical (cholinergic) synapses with the motorneurons (DLMns) of the dorsal longitudinal muscles (DLMs), the wing depressors. The neuronal pathway(s) to the dorsovental muscles (DVMs), the wing elevators, has not yet been worked out (the DLMs and DVMs are known jointly as indirect flight muscles - they are not attached directly to the wings, but rather move the wings indirectly by distorting the nearby thoracic cuticle) (King and Wyman, 1980; Allen et al., 2006). The di-synaptic activation of the DLMs (via PSI) causes a small but important delay in the timing of the contraction of these muscles relative to the monosynaptic activation of TTM (~0.5 ms) allowing the TTMs to first extend the femur and propel the fly off the ground. The TTMs simultaneously stretch-activate the DLMs which in turn mutually stretch-activate the DVMs for the duration of the flight. The GF pathway can be activated either indirectly by applying a sensory (e.g."air-puff" or "lights-off") stimulus, or directly by a supra-threshold electrical stimulus to the brain (described here). In both cases, an action potential reaches the TTMs and DLMs solely via the GFs, PSIs, and TTM/DLM motoneurons, although the TTMns and DLMns do have other, as yet unidentified, sensory inputs. Measuring "latency response" (the time between the stimulation and muscle depolarization) and the "following to high frequency stimulation" (the number of successful responses to a certain number of high frequency stimuli) provides a way to reproducibly and quantitatively assess the functional status of the GFS components, including both central synapses (GF-TTMn, GF-PSI, PSI-DLMn) and the chemical (glutamatergic) neuromuscular junctions (TTMn-TTM and DLMn-DLM). It has been used to identify genes involved in central synapse formation and to assess CNS function.  相似文献   
36.
Diagnostic catheters based on fibre Bragg gratings (FBG's) are proving to be highly effective for measurement of the muscular activity associated with motility in the human gut. While the primary muscular contractions that generate peristalsis are circumferential in nature, it has long been known that there is also a component of longitudinal contractility present, acting in harmony with the circumferential component to improve the overall efficiency of material movement. We report the detection of longitudinal motion in mammalian intestine using an FBG technique that should be viable for similar detection in humans. The longitudinal sensors have been combined with our previously reported FBG pressure sensing elements to form a composite catheter that allows the relative phase between the two components to be detected. The catheter output has been validated using video mapping in an ex‐vivo rabbit ileum preparation. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
37.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   
38.
Helicobacter hepaticus, a causal agent of hepatocarcinoma in mice, exhibits a cytolethal distending toxin activity. The three subunits of this holotoxin, CdtA, CdtB, and CdtC, and three CdtB mutants were produced as recombinant histidine-tagged proteins by using an in vitro cell-free protein expression system. We found that the presence of the three H. hepaticus Cdt subunits is required for cellular toxicity and that only a C-terminal CdtB mutation abolishes the activity of the complex. In vitro, H. hepaticus CdtB exhibits a DNase activity which is also abolished by this C-terminal CdtB mutation. These results suggest that the effect of H. hepaticus CDT probably involves the DNase activity of CdtB.  相似文献   
39.
A mononuclear cobalt(II) complex, [Co(ac)2(H2O)2(MeIm)2], with heteroleptic coordination sphere possessing the {CoO2O′2N2} chromophore has been prepared and structurally characterized. The magnetic data down to 2 K show an enhanced magnetic anisotropy manifesting itself in a large zero-field splitting (ZFS) parameter. As a consequence, the magnetization deviates substantially from the Brillouin-function behavior. A fit to the zero-field splitting model gave the following set of magnetic parameters: D/hc = +95 cm−1, gx = 2.530, zj/hc = −0.078, χTIP = 16.7 × 10−9 m3 mol−1, (gz = 2.0). The Griffith-Figgis model and the Generalized Crystal-Field model lie beyond the spin-Hamiltonian formalism; they gave analogous, although not identical ZFS parameters: D/hc = 109 cm−1, and D/hc = 77 cm−1, respectively. The absorption spectrum taken in the FAR-IR region exhibits manifold absorption peaks referring to the transitions among the crystal-field multiplets of the parent 4A2g + 4Eg terms (D4h), originating in a crystal-field splitting of the octahedral 4T1g ground term.  相似文献   
40.
A study of the magnetic anisotropies of three Ni cubane single-molecule magnets (SMM), [Ni(hmp)(MeOH)Cl]4·H2O (1·H2O) (hmpH = (2-hydroxymethyl)pyridine) [Ni(hmp)(dmb)Cl]4 (2) (dmb = 3,3-dimethylbutanol) and [Ni(hmp)(dmp)Cl]4 (3) (dmp = 2,2-dimethylpropanol) is reported. Frequency domain magnetic resonance spectroscopic (FDMRS) studies on 1, 2 and 3 as powder pellets reveal zero-field splitting (ZFS) for the spin ground states of these compounds in the solid state. The ZFS of the complexes 1 and 2 were determined and the presence of different molecular species was found in both complexes while only one species was found in 3. The nesting of the variable temperature variable field (VTVH) curves observed from magnetic circular dichroism (MCD) measurements on 1 in solution confirms the presence of ZFS. Virtually all the bands observed in the magnetic circular dichroism spectra possess the same sign, which may be related to the ferromagnetic exchange coupling. In addition, MCD measurements of a dilute solution demonstrate the molecular origin of the magnetic anisotropy in 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号