首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1968篇
  免费   96篇
  国内免费   83篇
  2023年   37篇
  2022年   46篇
  2021年   41篇
  2020年   39篇
  2019年   36篇
  2018年   46篇
  2017年   41篇
  2016年   52篇
  2015年   45篇
  2014年   91篇
  2013年   124篇
  2012年   70篇
  2011年   96篇
  2010年   81篇
  2009年   108篇
  2008年   100篇
  2007年   97篇
  2006年   102篇
  2005年   61篇
  2004年   66篇
  2003年   70篇
  2002年   59篇
  2001年   42篇
  2000年   40篇
  1999年   36篇
  1998年   31篇
  1997年   24篇
  1996年   31篇
  1995年   33篇
  1994年   39篇
  1993年   29篇
  1992年   31篇
  1991年   23篇
  1990年   19篇
  1989年   25篇
  1988年   19篇
  1987年   23篇
  1986年   25篇
  1985年   19篇
  1984年   36篇
  1983年   19篇
  1982年   27篇
  1981年   17篇
  1980年   23篇
  1979年   16篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有2147条查询结果,搜索用时 187 毫秒
31.
The benozomorphan derivative (-)-2-[2-(p-bromoacetamidophenyl)ethyl]-5,9 alpha-dimethyl-2'-hydroxy-6,7-benzomorphan (BAB), capable of reacting with nucleophilic groups, acts on neuroblastoma X glioma hybrid cells as a potent, irreversible opiate agonist. Its potency in inhibiting the increase in cellular cyclic AMP, evoked by prostaglandin E1, is comparable to that of Leu-enkephalin. This also applies to its capacity to compete with [3H]D-Ala2-Met-enkephalinamide ([3H]DAEA) in binding on cell membrane preparations. The comparatively lower potency of (-)-2-[2-(p-acetamidophenyl)-ethyl]-5,9 alpha-dimethly-2'-hydroxy-5,7-benzomorphan (AB), which differs from BAB in the substitution of the bromoacetamido group by an acetamido group, is of the same order of magnitude as that of morphine. The covalent interaction of BAB with the opiate receptors is deduced from the observations that (1) it is not possible to wash away this compound from the receptors, (2) the potency of BAB in inhibiting the specific binding of [3H]DAEA increases with prolonged preincubation time, and (3) AB behaves as a reversible agonist.  相似文献   
32.
Summary The choriocapillaris is a fenestrated capillary bed located posterior to the retinal pigment epithelium. It serves as the main source of supply to the photoreceptors, retinal pigment epithelium, and other cells of the outer retina. The permeability of these capillaries to intravenously injected ferritin (MW — approx. 480,000; mol. diam. 11 nm) was examined in the mouse, rabbit, and guinea pig, each of which is characterized by a different type of retinal vascularization. In all three species, the bulk of the ferritin remained in the capillary lumina, where it appeared to be blocked at the level of the diaphragmed fenestrae. Some ferritin was present in endothelial cell vacuoles. The results confirm previous work on the rat choriocapillaris and indicate that the barrier function of the choriocapillary endothelium is present even among species in which the retinal circulation differs significantly.Supported by NIH grant EY03418  相似文献   
33.
Summary The ultrastructural changes occurring in the feline visual cortex 3 hours after the injection of 0.02 mls of ferritin in 1% trypan blue in artificial cerebrospinal fluid have been studied.Near the site of injection, disrupted cells contained free and membrane-bound ferritin. In less damaged areas, some signs of oedema were present in the cells, especially in astrocytes. Membrane-bound ferritin occurred occasionally in neurones and more frequently in astrocytes and oligodendrocytes. Considerable amounts of ferritin were also accumulated in phagocytic cells of unknown origin. In blood vessels, ferritin collected in the basement membrane and around collagen and, in membrane-bound form, in pale cells at the periphery of the vessels. Ferritin occurred in all parts of the intercellular space except in interglial junctions and tight junctions between vascular endothelial cells.This work was supported by a research grant from the National Health and Medical Research Council of Australia to Professor M. J. Blunt, of the School of Anatomy, University of New South Wales. The author wishes to thank Professor Blunt for his constant encouragement and support. The assistance of Mrs. Ruth Mather is gratefully acknowledged.  相似文献   
34.
The cytotoxicity of many xenobiotics is related to their ability to undergo redox reactions and iron dependent free radical reactions. We have measured the ability of a number of redox active compounds to release iron from the cellular iron storage protein, ferritin. Compounds were reduced to their corresponding radicals with xanthine oxidase/hypoxanthine under N2 and the release of Fe2+ was monitored by complexation with ferrozine. Ferritin iron was released by a number of bipyridyl radicals including those derived from diquat and paraquat, the anthracycline radicals of adriamycin, daunorubicin and epirubicin, the semiquinones of anthraquinone-2-sulphonate, 1,5 and 2,6-dihydroxyanthraquinone, 1-hydroxyanthraquinone, purpurin, and plumbagin, and the nitroaromatic radicals of nitrofurantoin and metronidazole. In each case, iron release was more efficient than with an equivalent flux of superoxide. Introduction of air decreased the rate of iron release, presumably because the organic radicals reacted with O2 to form superoxide. In air, iron release was inhibited by superoxide dismutase. Semiquinones of menadione, benzoquinone, duroquinone, anthraquinone 1,5 and 2,6-disulphonate, 1,4 naphthoquinone-2-sulphonate and naphthoquinone, when formed under N2, were unable to release ferrin iron. In air, these systems gave low rates of superoxide dismutase-inhibitible iron release. Of the compounds investigated, those with a single electron reduction potential less than that of ferritin were able to release ferritin iron.  相似文献   
35.
Pretreatment of rat brain membranes at pH 4.5 before assay at pH 7.4 modifies the function of GTP-binding proteins (G-proteins) by eliminating Gs-stimulated adenylate cyclase activity while increasing opiate-inhibited adenylate cyclase activity. To help characterize the molecular nature of the low pH effect, we labeled Gs and Gi alpha-subunits in both control and low pH-pretreated membranes with the GTP photoaffinity analog [32P]P3 (4-azidoanilido)-P1-5'-GTP ([32P]AAGTP). When membranes were preincubated with unlabeled AAGTP, a persistent inhibitory state of adenylate cyclase was produced, which was overcome in untreated membranes with high (greater than 1 microM) concentrations of guanylyl-5'-imidodiphosphate [Gpp(NH)p]. In low pH-pretreated membranes, this inhibition could not be overcome, and stimulation by Gpp(NH)p was eliminated. Maximal inhibition of adenylate cyclase achieved by incubation with AAGTP was not altered by low pH pretreatment. Incorporation of [32P]AAGTP into Gs (42 kilodaltons) or Gi/o (40 kilodaltons) was unaffected by low pH pretreatment; however, transfer of 32P from Gi/o to Gs, which occurs with low (10 nM) concentrations of Gpp(NH)p in untreated membranes, was severely retarded in low pH-pretreated membranes. Both the potency and efficacy of Gpp(NH)p in producing exchange of [32P]AAGTP from Gi/o to Gs were markedly reduced by low pH pretreatment. These results correlate the loss of Gs-stimulated adenylate cyclase with a loss of transfer of nucleotide from Gi/o to Gs alpha-subunits and suggest that the nucleotide exchange participates in the modulation of neuronal adenylate cyclase.  相似文献   
36.
Previous work has shown that [3H]paroxetine is a potent and selective in vitro label for serotonin uptake sites in the mammalian brain. In the present study, [3H]paroxetine was tested in mice as an in vivo label for serotonin uptake sites. Maximum tritium concentration in the whole brain (1.4% of the intravenous dose) was reached 1 h after injection into a tail vein. Distribution of the tracer at 3 h after injection followed the distribution of serotonin uptake sites known from previous in vitro binding studies (r = 0.85). The areas of highest [3H]paroxetine concentration, in decreasing order, were: hypothalamus greater than frontal cortex greater than olfactory tubercles greater than thalamus greater than upper colliculi greater than brainstem greater than hippocampus greater than striatum greater than cerebellum. Preinjection of carrier paroxetine (1 mg/kg) significantly decreased [3H]paroxetine concentration in all areas except in the cerebellum, which is known to contain a relatively low number of specific binding sites. Kinetic studies showed highest specific [3H]paroxetine binding (tissue minus cerebellum) at 2 h after injection and slow clearance of activity thereafter (half-time of dissociation from the hypothalamus, 215 min). The specificity of in vivo [3H]paroxetine binding was studied by preinjecting monoamine uptake blockers or receptor antagonists 5 min before administration of [3H]paroxetine. Serotonergic or muscarinic cholinergic receptor antagonists and dopamine or norepinephrine uptake blockers did not reduce the in vivo binding of [3H]paroxetine. In contrast, there was an excellent correlation (r = 0.99) between the in vivo inhibitory potencies of serotonin uptake blockers in this study and previously published in vitro data on inhibition of [3H] serotonin uptake in brain synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
37.
To investigate the effect of endogenous proteolysis on the molecular weights of the benzodiazepine binding proteins, brains of trout, chicken, and rat were removed immediately after death and stored at room temperature for various periods of time before they were frozen. Photoaffinity labeling of membranes with [3H]flunitrazepam, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, revealed proteolytic fragments of 47K in trout, chicken, and rat. The proteolysis set in rapidly after death. Seemingly in parallel with the degradation observed fluorographically, the affinity for [3H]flunitrazepam increased without systematic changes in receptor density. The degradation pattern was not identical to that of the photolabeled trypsinized benzodiazepine binding proteins. The endogenous proteolytic fragments were deglycosylated in two steps. In conclusion, proteolytic effects must be taken into account when interpreting labeling patterns and binding parameters.  相似文献   
38.
Crotoxin is a neurotoxic phospholipase A2 capable of blocking synaptic transmission by inhibiting the release of neurotransmitters. The photoaffinity labeling technique was used to identify the neural membrane molecules involved in the binding of crotoxin. A photoactivatable, radioactive derivative of crotoxin was synthesized by reacting crotoxin withN-hydroxysuccinimidyl-4-azidobenzoate and with Na[125I]. Photoirradiation of synaptosomes from guinea pig brains in the presence of the crotoxin derivative resulted in the formation of a major radioactive conjugate of 100,000 daltons as revealed by autoradiography of a sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern. Pretreatment of the synaptosomes with trypsin,Staphylococcus aureus protease, or papain prevented the formation of this conjugate. The conjugate was not detected when plasma membranes from several nonneural tissues replaced the brain synaptosomes. Unmodified crotoxin inhibited the formation of this adduct with an IC50 of about 10–8 M. Mojave toxin, caudoxin, notexin,Naja naja PLA, and taipoxin also inhibited adduct formation with different potencies, while -bungarotoxin and pancreatic PLA were ineffective. We concluded that an 85,000-dalton protein is the major component responsible for the binding of crotoxin to synaptosomal membranes.On leave from Department of Biochemistry and Biophysics, University of Hawaii School of Medicine, Honolulu, Hawaii.  相似文献   
39.
本文利用扫描电镜放射自显影(SEM-ARG)技术研究鸡胚肝凝集素的专一性。该凝集素经乳糖尿素液抽提和离心分离后,再用DE-52纤维素柱和蓝色葡聚糖柱进一步纯化。纯化后的鸡胚肝凝集素用 125Ⅰ标记。以标记的 125Ⅰ-凝集素为探针再标记来自不同组织的细胞。标记的细胞经过放射自显影,用扫描电镜对细胞表面凝集素受体的位点进行直接观察。实验结果表明鸡胚肝凝集素对细胞的凝集作用具有相对的专一性。  相似文献   
40.
Ferritin, a protein widespread in nature, concentrates iron ∼1011–1012-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n= 7) is higher than in animals (n= 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling. Received: 25 July 1995 / Accepted: 3 October 1995  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号