首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4347篇
  免费   312篇
  国内免费   169篇
  2023年   42篇
  2022年   82篇
  2021年   111篇
  2020年   92篇
  2019年   129篇
  2018年   132篇
  2017年   82篇
  2016年   108篇
  2015年   122篇
  2014年   211篇
  2013年   285篇
  2012年   152篇
  2011年   220篇
  2010年   176篇
  2009年   232篇
  2008年   265篇
  2007年   223篇
  2006年   245篇
  2005年   194篇
  2004年   190篇
  2003年   158篇
  2002年   149篇
  2001年   105篇
  2000年   103篇
  1999年   106篇
  1998年   112篇
  1997年   66篇
  1996年   67篇
  1995年   64篇
  1994年   68篇
  1993年   46篇
  1992年   45篇
  1991年   38篇
  1990年   32篇
  1989年   38篇
  1988年   26篇
  1987年   22篇
  1986年   29篇
  1985年   37篇
  1984年   30篇
  1983年   25篇
  1982年   33篇
  1981年   22篇
  1980年   25篇
  1979年   15篇
  1978年   12篇
  1977年   14篇
  1976年   17篇
  1975年   8篇
  1973年   7篇
排序方式: 共有4828条查询结果,搜索用时 15 毫秒
971.
972.
The present study was conducted to survey functional biomarkers for evaluation of niacin nutritional status. Over 500 enzymes require niacin as a coenzyme. Of these, we chose the tryptophan degradation pathway. To create niacin-deficient animals, quinolinic acid phosphoribosyltransferase-knock out mice were used in the present study because wild type mice can synthesize nicotinamide from tryptophan. When the mice were made niacin-deficient, the urinary excretion of xanthurenic acid (XA) was extremely low compared with control mice; however, it increased according to the recovery of niacin nutritional status. The urinary excretion of kynurenic acid (KA) was the reverse of XA. Kynurenine 3-monooxygenase, which needs NADPH, was thought to be suppressed by niacin deficiency. Thus, we calculated the urinary excretion ratio of XA:KA as a functional biomarker of niacin nutrition. The ratio increased according to recovering niacin nutritional status. Low values equate with low niacin nutritional status.  相似文献   
973.
One of the most important issues nowadays is memory disorders. The exact circadian modulation of learning and memory is still under investigation. The present study was carried out to evaluate the probable enhancing and neuroprotective effects of the Egyptian Moringa peregrina; administered at two different Zeitgeber times (ZT), on learning and memory in mice. M. peregrina dried leaves were aqueously extracted and intranasally (IN) administered at four doses (viz. 12.5, 25, 50, and 100 mg/kg). Twenty animal groups (n = 8/group) were treated with M. peregrina at ZT 3:00 vs. 15:00 representing the rest (day) vs. active (night) phases, respectively. Additionally, sub-chronic effect of daily IN administration of the 25 mg/kg dose for two weeks was examined at ZT 3:00 vs. 15:00. Memory performance was assessed after 1, 2 weeks of treatment and a 3rd recovery week. Memory test was performed at ZT 17:00 by measuring the percentage of time spent in novel arm of Y-maze. Dose-response curve revealed that both 25 and 50 mg/kg doses administered at ZT 3:00 significantly improved memory efficiency. Rest phase administration significantly enhanced memory functions after 1, 2 weeks as well as after the recovery week. Moreover, IN pretreatment with M. peregrina (25 mg/kg) revealed a protective effect against scopolamine-induced amnesia. In conclusion, these findings clearly indicated that M. peregrina possesses valuable enhancing and protective effects on learning and memory processes in mice which is circadian-phase dependent.  相似文献   
974.
975.
Female mice were exposed maternally to piperonyl butoxide (PBO) through diet to provide levels of 0 (control), 0.015, 0.03, and 0.06% during gestation and lactation periods, and selected reproductive and neurobehavioral parameters were measured in F1 generation. There was no adverse effect of PBO on litter size, litter weight, or sex ratio at birth. The average body weights of offspring showed no significant effects of PBO treatment through the lactation period in both sexes except for the low‐dose group of females on PND 21. With respect to behavioral developmental parameters, swimming direction of female offspring on PND 7 was significantly accelerated in the low‐dose group (p = 0.022). Exploratory behavior examination in male offspring indicated that total distance and movement time shortened significantly in dose‐related manners (p = 0.0138 and 0.00231, respectively), average time of rearing lengthened significantly in a dose‐related manner (p = 0.00814), and the frequencies of mice with urination was increased significantly in a dose‐related manner (p < 0.05). For spontaneous behavior examination, the average time of movement in males and average time of rearing in females showed slightly dose‐related effects in the F1 generation. The dose levels of PBO in the present study produced some adverse effects in neurobehavioral parameters in mice.  相似文献   
976.
Pregabalin was evaluated for potential developmental toxicity in mice and rabbits. Pregabalin was administered once daily by oral gavage to female albino mice (500, 1250, or 2500 mg/kg) and New Zealand White rabbits (250, 500, or 1250 mg/kg) during organogenesis (gestation day 6 through 15 [mice] or 6 through 20 [rabbits]). Fetuses were evaluated for viability, growth, and morphological development. Pregabalin administration to mice did not induce maternal or developmental toxicity at doses up to 2500 mg/kg, which was associated with a maternal plasma exposure (AUC0–24) of 3790 μg?hr/ml, ≥30 times the expected human exposure at the maximum recommended daily dose (MRD; 600 mg/day). In rabbits, treatment‐related clinical signs occurred at all doses (AUC0–24 of 1397, 2023, and 4803 μg?hr/ml at 250, 500, and 1250 mg/kg, respectively). Maternal toxicity was evident at all doses and included ataxia, hypoactivity, and cool to touch. In addition, abortion and females euthanized moribund with total resorption occurred at 1250 mg/kg. There were no treatment‐related malformations at any dose. At 1250 mg/kg, compared with study and historical controls, the percentage of fetuses with retarded ossification was significantly increased and the mean number of ossification sites was decreased, which correlated with decreased fetal and placental weights, consistent with in utero growth retardation. Therefore, the no‐effect dose for developmental toxicity in rabbits was 500 mg/kg, which produced systemic exposure approximately 16‐times human exposure at the MRD. These findings indicate that pregabalin, at the highest dose tested, was not teratogenic in mice or rabbits  相似文献   
977.
Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA‐approved drug rapamycin has been shown to promote lifespan and delay age‐related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the long‐term prophylactic use of rapamycin as a therapy for age‐related diseases. While the beneficial effects of rapamycin are largely mediated by the inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by the inhibition of a second mTOR‐containing complex, mTORC2, which is much less sensitive to rapamycin. We hypothesized that different rapamycin dosing schedules or the use of FDA‐approved rapamycin analogs with different pharmacokinetics might expand the therapeutic window of rapamycin by more specifically targeting mTORC1. Here, we identified an intermittent rapamycin dosing schedule with minimal effects on glucose tolerance, and we find that this schedule has a reduced impact on pyruvate tolerance, fasting glucose and insulin levels, beta cell function, and the immune system compared to daily rapamycin treatment. Further, we find that the FDA‐approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 while having a reduced impact on glucose and pyruvate tolerance. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs.  相似文献   
978.
The mechanistic relationship between amyloid β1‐42 (Aβ1‐42) and the alteration of Tau protein are debated. We investigated the effect of Aβ1‐42 monomers and oligomers on Tau, using mice expressing wild‐type human Tau that do not spontaneously develop Tau pathology. After intraventricular injection of Aβ1‐42, mice were sacrificed after 3 h or 4 days. The short‐lasting treatment with Aβ monomers, but not oligomers, showed a conformational PHF‐like change of Tau, together with hyperphosphorylation. The same treatment induced increase in concentration of GSK3 and MAP kinases. The inhibition of the kinases rescued the Tau changes. Aβ monomers increased the levels of total Tau, through the inhibition of proteasomal degradation. Aβ oligomers reproduced all the aforementioned alterations only after 4 days of treatment. It is known that Aβ1‐42 monomers foster synaptic activity. Our results suggest that Aβ monomers physiologically favor Tau activity and dendritic sprouting, whereas their excess causes Tau pathology. Moreover, our study indicates that anti‐Aβ therapies should be targeted to Aβ1‐42 monomers too.  相似文献   
979.
Drug delivery through the vagina is a novel and effective approach for treating embryonic diseases. Magnetic nanoparticles (MNPs) currently are used as drug delivery systems. The safety of MNPs for use with embryonic tissues remains unclear. We used pregnant mice to investigate the possible toxicity of MNPs toward neonatal liver at three embryonic ages using histochemical and immunohistochemical techniques. MNPs were instilled through the vaginas of pregnant mice at days 12 (E12), 15 (E15) and 17 (E17) after fertilization. We found MNPs in the neonatal liver parenchyma after delivery of the pups on day 20. We observed that MNPs caused mild apoptosis of hepatocytes, cytoplasmic vacuolation and lymphocytic infiltration in the neonatal liver after treatment at E15 compared to instillation at E12 and E17. We observed also that MNPs increased the production of caspase proteins and tumor necrosis factor receptor 2 proteins, which are indicators of apoptosis, in the neonatal liver after instillation of MNPs at E15 compared to instillation at E12 and E17. MNPs also increased the number of collagen fibers and the amounts of connective tissue growth factors in the neonatal liver parenchyma after instillation at E15 compared to instillation at E12 and E17. The general carbohydrates in the neonatal liver were decreased in a time-dependent manner after instillation at E17, E15 and E12 owing to the presence of MNPs in the parenchyma. Overall, we determined that MNPs were mildly toxic to neonatal liver.  相似文献   
980.
Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号