首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2019年   1篇
  2018年   4篇
  2014年   5篇
  2013年   1篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  1997年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有61条查询结果,搜索用时 125 毫秒
21.

Background

Heme oxygenase catalyzes the conversion of heme to iron, carbon monoxide and biliverdin employing oxygen and reducing equivalents. This enzyme is essential for heme-iron utilization and contributes to virulence in Leptospira interrogans.

Methods

A phylogenetic analysis was performed using heme oxygenases sequences from different organisms including saprophytic and pathogenic Leptospira species. L. interrogans heme oxygenase (LepHO) was cloned, overexpressed and purified. The structural and enzymatic properties of LepHO were analyzed by UV–vis spectrophotometry and 1H NMR. Heme-degrading activity, ferrous iron release and biliverdin production were studied with different redox partners.

Results

A plastidic type, high efficiently ferredoxin-NADP+ reductase (LepFNR) provides the electrons for heme turnover by heme oxygenase in L. interrogans. This catalytic reaction does not require a ferredoxin. Moreover, LepFNR drives the heme degradation to completeness producing free iron and α-biliverdin as the final products. The phylogenetic divergence between heme oxygenases from saprophytic and pathogenic species supports the functional role of this enzyme in L. interrogans pathogenesis.

Conclusions

Heme-iron scavenging by LepHO in L. interrogans requires only LepFNR as redox partner. Thus, we report a new substrate of ferredoxin-NADP+ reductases different to ferredoxin and flavodoxin, the only recognized protein substrates of this flavoenzyme to date. The results presented here uncover a fundamental step of heme degradation in L. interrogans.

General significance

Our findings contribute to understand the heme-iron utilization pathway in Leptospira. Since iron is required for pathogen survival and infectivity, heme degradation pathway may be relevant for therapeutic applications.  相似文献   
22.
Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, α-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.  相似文献   
23.
This article describes the generation of the Human Combinatorial Antibody Library HuCAL GOLD. HuCAL GOLD is a synthetic human Fab library based on the HuCAL concept with all six complementarity-determining regions (CDRs) diversified according to the sequence and length variability of naturally rearranged human antibodies. The human antibody repertoire was analyzed in-depth, and individual CDR libraries were designed and generated for each CDR and each antibody family. Trinucleotide mixtures were used to synthesize the CDR libraries in order to ensure a high quality within HuCAL GOLD, and a β-lactamase selection system was employed to eliminate frame-shifted clones after successive cloning of the CDR libraries. With these methods, a large, high-quality library with more than 10 billion functional Fab fragments was achieved. By using CysDisplay, the antibody fragments are displayed on the tip of the phage via a disulfide bridge between the phage coat protein pIII and the heavy chain of the antibody fragment. Efficient elution of specific phages is possible by adding reducing agents. HuCAL GOLD was challenged with a variety of different antigens and proved to be a reliable source of high-affinity human antibodies with best affinities in the picomolar range, thus functioning as an excellent source of antibodies for research, diagnostic, and therapeutic applications. Furthermore, the data presented in this article demonstrate that CysDisplay is a robust and broadly applicable display technology even for high-throughput applications.  相似文献   
24.
Two isoforms of ferredoxin-NADP+ reductase (FNR) exist in higher plants, the leaf (or photosynthetic) and the root (or non-photosynthetic) isoform, which have 48% amino acid sequence identity and display specific structural and functional features. With the aim to gain further insight into the structure–function relationship of this enzyme, we designed two novel chimeric flavoenzymes by swapping the structural domains between the leaf and the root isoforms. Characterization of the chimeras would allow dissection of the contribution of the individual domains to catalysis. The chimera obtained by grafting together the FAD-binding domain of the root-isoform and the NADP-binding domain of the leaf-isoform was inactive when expressed in Escherichia coli. On the other hand, the chimera assembled in the opposite way (leaf FAD-binding domain and root NADP-binding domain) was functional and was produced in the bacterial host to a level threefold higher than that of the parent enzymes. The protein was purified and found to be as stable as the natural isoforms. Limited proteolysis excluded the presence in the chimera of misfolded regions. The affinity of the chimera for ferredoxin I (Fd I) was similar to that of the leaf isoform, although interprotein electron-transfer was partially impaired. As occurs with the root isoform, the chimera bound NADP+ with high affinity, while spectroscopic evidence suggested that the conformation adopted by the nicotinamide moiety bound to the chimera was similar to that observed in the leaf enzyme. Interestingly, the chimera, by combining favorable features from both parent isoforms, acquired a catalytic efficiency (kcat/Km), as an NADPH-dependent diaphorase, higher than those of both the root (~2-fold) and the leaf enzyme (~5-fold). Thus, molecular breeding between isozymes has improved the catalytic properties of FNR.  相似文献   
25.
A new method for identification and quantitation of [2Fe-2S] and [4Fe-4S] types of iron-sulfur centers in proteins is presented. The method relies on the solubilization of C6H5SH, [Fe2S2(SC6H5)4]?2 and [Fe4S4(SC6H5)4]?2 in aqueous solutions containing 5–17 vol % N,N-dimethylformamide by 5 vol % Triton X-100. Quantitative removal of the Fe2S2 core of Spinach ferredoxin is achieved in media containing 80 vol % water. Advantages over previous core extrusion methods include avoidance of toxic hexamethylphosphoramide, a smaller percentage of organic solvent, increased sensitivity and (for Spinach ferredoxin) decreased extrusion time.  相似文献   
26.
27.
Hydrogen metabolism in blue-green algae.   总被引:12,自引:0,他引:12  
H Bothe  E Distler  G Eisbrenner 《Biochimie》1978,60(3):277-289
  相似文献   
28.
Antimycin A-sensitive cyclic electron flow (CEF) was discovered as cyclic phosphorylation by Arnon et al. (1954). Because of its sensitivity to antimycin A, PROTON GRADIENT REGULATION 5 (PGR5)/PGR5-like Photosynthetic Phenotype 1 (PGRL1)-dependent CEF has been considered identical to the CEF of Arnon et al. However, this conclusion still needs additional supportive evidence, mainly because of the absence of definitive methods of evaluating CEF activity. In this study, we revisited the classical method of monitoring cyclic phosphorylation in ruptured chloroplasts to characterize two Arabidopsis mutants: pgr5, which is defective in antimycin A-sensitive CEF, and chlororespiratory reduction 2-1 (crr2-1), which is defective in chloroplast NDH-dependent CEF. We observed a significant reduction in CEF-dependent pmf formation and consequently ATP synthesis in the pgr5 mutant, although LEF-dependent pmf formation and ATP synthesis were not impaired at photosynthetic photon flux densities below 130?μmol?m?2?s?1. In contrast, the contribution of chloroplast NDH complex to pmf formation and ATP synthesis was not significant. Antimycin A partially inhibited CEF-dependent pmf formation, although there may be further inhibition sites. Unlike in the observation in leaves, the proton conductivity of ATP synthase, monitored as gH+, was not enhanced in ruptured chloroplasts of the pgr5 mutant.  相似文献   
29.
After transferring the dark-acclimated cyanobacteria to light, flavodiiron proteins Flv1/Flv3 serve as a main electron acceptor for PSI within the first seconds because Calvin cycle enzymes are inactive in the dark. Synechocystis PCC 6803 mutant Δflv1flv3 devoid of Flv1 and Flv3 retained the PSI chlorophyll P700 in the reduced state over 10?s (Helman et al., 2003; Allahverdiyeva et al., 2013). Study of P700 oxidoreduction transients in dark-acclimated Δflv1flv3 mutant under the action of successive white light pulses separated by dark intervals of various durations indicated that the delayed oxidation of P700 was determined by light activation of electron transport on the acceptor side of PSI. We show that the light-induced redox transients of chlorophyll P700 in dark-acclimated Δflv1flv3 proceed within 2?min, as opposed to 1–3?s in the wild type, and comprise a series of kinetic stages. The release of rate-limiting steps was eliminated by iodoacetamide, an inhibitor of Calvin cycle enzymes. Conversely, the creation with methyl viologen of a bypass electron flow to O2 accelerated P700 oxidation and made its extent comparable to that in the wild-type cells. The lack of major sinks for linear electron flow in iodoacetamide-treated Δflv1flv3 mutant, in which O2- and CO2-dependent electron flows were impaired, facilitated cyclic electron flow, which was evident from the decreased steady-state oxidation of P700 and from rapid dark reduction of P700 during and after illumination with far-red light. The results show that the photosynthetic induction in wild-type Synechocystis PCC 6803 is largely hidden due to the flavodiiron proteins whose operation circumvents the rate-limiting electron transport steps controlled by Calvin cycle reactions.  相似文献   
30.
Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcational function, ferredoxin at the acceptor side of Photosystem 1 is one of the focal points for such an engineering. With hydrogen production as model system, we show here the impact and potential of redox partner design involving ferredoxin (Fd), ferredoxin-oxido-reductase (FNR) and [FeFe]?hydrogenase HydA1 on electron transport in a future cyanobacterial design cell of Synechocystis PCC 6803. X-ray-structure-based rational design and the allocation of specific interaction residues by NMR-analysis led to the construction of Fd- and FNR-mutants, which in appropriate combination enabled an about 18-fold enhanced electron flow from Fd to HydA1 (in competition with equimolar amounts of FNR) in in vitro assays. The negative impact of these mutations on the Fd-FNR electron transport which indirectly facilitates H2 production (with a contribution of ≤42% by FNR variants and ≤23% by Fd-variants) and the direct positive impact on the Fd-HydA1 electron transport (≤23% by Fd-mutants) provide an excellent basis for the construction of a hydrogen-producing design cell and the study of photosynthetic efficiency-optimization with cyanobacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号