首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2833篇
  免费   194篇
  国内免费   108篇
  3135篇
  2024年   2篇
  2023年   67篇
  2022年   78篇
  2021年   97篇
  2020年   85篇
  2019年   138篇
  2018年   154篇
  2017年   97篇
  2016年   64篇
  2015年   107篇
  2014年   146篇
  2013年   213篇
  2012年   107篇
  2011年   142篇
  2010年   109篇
  2009年   98篇
  2008年   94篇
  2007年   134篇
  2006年   118篇
  2005年   125篇
  2004年   98篇
  2003年   86篇
  2002年   98篇
  2001年   57篇
  2000年   43篇
  1999年   33篇
  1998年   57篇
  1997年   46篇
  1996年   32篇
  1995年   47篇
  1994年   38篇
  1993年   28篇
  1992年   44篇
  1991年   23篇
  1990年   27篇
  1989年   15篇
  1988年   18篇
  1987年   21篇
  1986年   25篇
  1985年   28篇
  1984年   25篇
  1983年   17篇
  1982年   14篇
  1981年   13篇
  1980年   11篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
排序方式: 共有3135条查询结果,搜索用时 9 毫秒
131.
Objective: The aim of our study was to determine the prevalence of impaired glucose tolerance (IGT) and type 2 diabetes (DM2) in obese children and adolescents of Greek origin and compare our data with pertinent literature findings in an attempt to uncover predictive, risk, and preventive factors. Research Methods and Procedures: A total of 117 obese children and adolescents 12.1 ± 2.7 years old underwent a 2‐hour oral glucose tolerance test (OGTT). Insulin resistance (IR) and β‐cell function were estimated using the homeostasis model assessment (HOMA)‐IR and the insulinogenic index, respectively. Results: A total of 17 patients (14.5%) had IGT, and none had DM2. The overall prevalence rates of both IGT and DM2 in our subjects were lower than those reported in a recent multiethnic U.S. study. Nevertheless, the difference between our IGT data and those of the U.S. study was due mostly to the prepubertal subjects (9% vs. 25.4%), whereas no difference was observed in the pubertal population (18% vs. 21%). Fasting glucose, insulin, and HOMA‐IR values were not predictive of IGT. The absolute value of insulin at 2 hours of the OGTT combined with the time‐integrated glycemia (AUCG) can strongly predict IGT, whereas higher area under the curve for insulin (AUCI) values were found to be protective. Discussion: In ethnic groups less prone to diabetes development, IGT or DM2 in obese subjects is more likely to develop at puberty than at the prepubertal stage. It is advisable that physicians caring for obese adolescents perform an OGTT for early detection of IGT because HOMA‐IR values, although higher in IGT subjects and indicative of IR, cannot predict IGT.  相似文献   
132.
Summary In rat adipocytes, the insulin stimulation of the rate of glucose uptake is due, at least partially, to the recruitment of glucose transporter proteins from an intracellular compartment to the plasma membrane.Vanadate is a known insulin mimetic agent and causes an increase in the rate of glucose transport in rat adipocytes similar to that seen with insulin. The objective of the present study was to determine whether vanadate exerts its effect through the recruitment of glucose transporters to the plasma membrane.We report that under conditions where vanadate stimulates the rate of 2-deoxyglucose uptake to the same extent as insulin, the concentration of GLUT-4 in the plasma membrane was increased similarly by both insulin and vanadate, and its concentration was decreased in the low density microsomal fraction. These results suggest that vanadate induces the recruitment of GLUT-4 to the plasma membrane. The effects of vanadate and insulin on the stimulation of 2-deoxyglucose uptake and recruitment of GLUT-4 were not additive.This is the first report of an effect of vanadate on the intracellular distribution of the glucose transporter.  相似文献   
133.
Fatty acid-binding proteins (FABP) are abundant cytosolic proteins whose level is responsive to nutritional, endocrine, and a variety of pathological states. Although FABPs have been investigatedin vitro for several decades, little is known of their physiological function. Liver L-FABP binds both fatty acids and cholesterol. Competitive binding analysis and molecular modeling studies of L-FABP indicate the presence of two ligand binding pockets that accomodate one fatty acid each. One fatty acid binding site is identical to the cholesterol binding site. To test whether these observations obtainedin vitro were physiologically relevant, the cDNA encoding L-FABP was transfected into L-cells, a cell line with very low endogenous FABP and sterol carrier proteins. Uptake of both ligands did not differ between control cells and low expression clones. In contrast, both fatty acid uptake and cholesterol uptake were stimulated in the high expression cells. In high expression cells, uptake of fluorescent cis-parinaric acid was enhanced more than that of trans-parinaric acid. This is consistent with the preferential binding of cis-fatty acids to L-FABP but in contrast to the preferential binding of trans-parinaric acid to the L-cell plasma membrane fatty acid transporter (PMFABP). These data show that the level of cytosolic fatty acids in intact cells can regulate both the extent and specificity of fatty acid uptake. Last, sphingomyelinase treatment of L-cells released cholesterol from the plasma membrane to the cytoplasm and stimulated microsomal acyl-CoA: cholesteryl acyl transferase (ACAT). This process was accelerated in high expression cells. These observations show for the first time in intact cells that L-FABP, a protein most prevalent in liver and intestine where much fat absorption takes place, may have a role in fatty acid and cholesterol absorption.Abbreviations FABP fatty acid-binding protein - L-FABP liver fatty acid-binding protein - I-FABP intestinal fatty acid-binding protein - H-FABP heart fatty acid-binding protein - A-FABP adipocyte fatty acid-binding protein - PMFABP plasma membrane fatty acid-binding protein - SCP-2 sterol carrier protein-2 - Dehydroergosterol (DHE) d-5,7,9(11),22-ergostatetraene-3b-ol - cis-parinaric acid-9Z, 11E, 13E, 15Z-octatetraenoic acid - trans parinaric acid, 9E, 11E, 13E, 14E-octatetraenoic acid - BSA bovine serum albumin - KRH Krebs-Ringer-Henseleit buffer  相似文献   
134.
为考察人源乳酸菌(发酵乳杆菌Lactobacillus fermentum 11、305和植物乳杆菌Lactobacillus plantarum 22、25)对2型糖尿病的缓解效果,对2型糖尿病小鼠连续灌胃菌粉溶液12周.每周记录各组小鼠体重、进食量和血糖.实验结束前进行口服葡萄糖耐量试验和胰岛素抵抗试验.实验结束后...  相似文献   
135.
This work investigates the effect of alloxan-induced short-term diabetes (24 h) on D-3-hydroxybutyrate metabolism at physiological and non-physiological concentrations of the ketone body in the isolated non-working perfused rat heart. Also the effect of insulin (2 mU.ml−1) on D-3-hydroxybutyrate metabolism was investigated in hearts from normal and diabetic rats. The rates of D-3-hydroxybutyrate utilization and oxidation and of acetoacetate production were proportional to D-3-hydroxybutyrate concentration. The utilization of D-3-hydroxybutyrate showed saturation kinetics in hearts from normal and diabetic rats, in the presence and absence of insulin. Acute short-term diabetes augmented D-3-hydroxybutyrate utilization and oxidation at 1.25 and 2.5 mM DL-3-HB, with no significant effect at higher concentrations, but increased acetoacetate production at all investigated concentrations. In hearts from normal rats, insulin enhanced D-3-hydroxybutyrate utilization and oxidation at 2.5, 5, and 10 mM DL-3-HB, but no effect was observed at the lowest (1.25 mM) and highest (16 mM) DL-3-HB concentrations. Insulin had no effect on D-3-hydroxybutyrate metabolism in hearts from diabetic rats. No significant effect of insulin on the rate of acetoacetate production in normal and diabetic states was observed.  相似文献   
136.
Catfish pancreatic somatostatin, which contains eight additional amino acids on the amino terminus of a tetradecapeptide with considerable homology to tetradecapeptide somatostatin (SRIF), is a naturally occurring homology of the hypothalamic peptide. The purpose of these studies was to determibe the biological activity of this somatostatin homolog. Inhibition of 125I-labelled tyr1-SRIF binding to bovine pituitart plasma membranes by catfish pancreatic somatostatin was approximately 33% that of SRIF. Pancreatic somatostatin has full biological activity measured by inhibition of growth hormone release from isolated rat pituitary cells, but 0.01–0.1% the potency of SRIF. Pancreatic somatostatin at 100 ng/ml produced a 50–60% inhibition of insulin and glucagon secretion from perfused rat pancreas, while SRIF produced comparable inhibition at 10 ng/ml. This report demonstrates that a larger molecular form and natural homolog of SRIF, isolated from fish pancreas, has the same (but reduced) biological activities in rat assay systems as somatostatin originally isolated from sheep hypothalamus.  相似文献   
137.
As an essential nutrient involved in carbohydrate and lipid metabolism, chromium is of extraordinary importance for patients with diabetes. Plasma concentrations do not reflect the chromium supply; thus, we determined the element’s content in blood cells in order to evaluate the body status. We investigated 86 blood donors (C) and 35 diabetics type 2 (Dm2). After the isolation of the blood cells by using a density centrifugation, the chromium concentrations were determined by electrothermal atomic absorption spectrometry. Compared to C, Dm2 had higher values in plasma, erythrocytes, and platelets (248%, 61%, and 91%, respectively) and lower contents in polymorphonuclear and mononuclear leukocytes (each −35%, age- and sex-matched groups with n=35, each p<0.01). The poorer the metabolic control assessed by HbA1c, the higher were the chromium concentrations in plasma (r=+0.46, n=33, p=0.007, increase 11.1% per %HbA1c) and the lower were the values in mononuclear leukocytes (r=−0.45, n=33, p=0.008, decrease 17.8% per %HbA1c). The changed amounts in plasma and in mononuclear cells in increasing hyperglycemia could be the result of an intracellular/extracellular redistribution of the element. High plasma levels might explain the renal chromium losses of diabetics, whereas the lymphocytes could reflect a decreasing chromium body state.  相似文献   
138.
Sulfo-N-succinimidyl esters of LCFAs are a powerful tool to investigate the functional significance of plasmalemmal proteins in the LCFA uptake process. This notion is based on the following observations. First, sulfo-N-succinimidyl oleate (SSO) was found to inhibit the bulk of LCFA uptake into various cell types, i.e. rat adipocytes, type II pneumocytes and cardiac myocytes. Second, using cardiac giant membrane vesicles, in which LCFA uptake can be investigated in the absence of mitochondrial -oxidation, SSO retained the ability to largely inhibit LCFA uptake, indicating that inhibition of LCFA transsarcolemmal transport is its primary action. Third, SSO has no inhibitory effect on glucose and octanoate uptake into giant membrane vesicles derived from heart and skeletal muscle, indicating that its action is specific for LCFA uptake. Finally, SSO specifically binds to the 88 kDa plasmalemmal fatty acid transporter FAT, a rat homologue of human CD36, resulting in an arrest of the transport function of this protein.In addition to its inhibitory action at the plasma membrane level, evidence is presented for the lack of a direct inhibitory effect on subsequent LCFA metabolism. First, the relative contribution of oxidation and esterification to LCFA uptake is not altered in the presence of SSO. Second, isoproterenol-mediated channeling of LCFAs into oxidative pathways is not affected by sulfo-N-succinimidyl palmitate (SSP). As an example of its application we used SSP to study the role of FAT/CD36 in contraction- and insulin-stimulated LCFA uptake by cardiac myocytes , showing that this transporter is a primary site of regulation of cellular LCFA utilization.  相似文献   
139.
This study investigates the antioxidant and antidiabetic activity of the WL15 peptide derived from Channa striatus on regulating the antioxidant property in the rat skeletal muscle cell line (L6) and enhancing glucose uptake via glucose metabolism. Increased oxidative stress plays a major role in the development of diabetes and its complications. Strategies are needed to mitigate the oxidative stress that can reduce these pathogenic processes. Our results showed that with treatment with WL15 peptide, the reactive oxygen species significantly decreased in L6 myotubes in a dose-dependent manner, and increased antioxidant enzymes help to prevent the formation of lipid peroxidation in L6 myotubes. The cytotoxicity of WL15 is evaluated in the L6 cells and found to be non-cytotoxic at the tested concentration. Also, for the analysis of glucose uptake activity in L6 cells, the 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxy- d -glucose assay was performed in the presence of wortmannin and genistein inhibitors. WL15 demonstrated antidiabetic activities through a dose-dependent increase in glucose uptake (64%) and glycogen storage (7.8 mM). The optimal concentration for the maximum activity was found to be 50 µM. In addition, studies of gene expression in L6 myotubes demonstrated upregulation of antioxidant genes and genes involved in the pathway of insulin signaling. In cell-based assays, WL15 peptide decreased intracellular reactive oxygen species levels and demonstrated insulin mimic activity by enhancing the primary genes involved in the insulin signaling pathway by increased glucose uptake indicating that glucose transporter type 4 (GLUT4) is regulated from the intracellular pool to the plasma membrane.  相似文献   
140.
Ectopic fat accumulation has been linked to lipotoxic events, including the development of insulin resistance in skeletal muscle. Indeed, intramyocellular lipid storage is strongly associated with the development of type 2 diabetes. Research during the last two decades has provided evidence for a role of lipid intermediates like diacylglycerol and ceramide in the induction of lipid-induced insulin resistance. However, recently novel data has been gathered that suggest that the relation between lipid intermediates and insulin resistance is less straightforward than has been previously suggested, and that there are several routes towards lipid-induced insulin resistance. For example, research in this field has shifted towards imbalances in lipid metabolism and lipid droplet dynamics. Next to imbalances in key lipogenic and lipolytic proteins, lipid droplet coat proteins appear to be essential for proper intramyocellular lipid storage, turnover and protection against lipid-induced insulin resistance.Here, we discuss the current knowledge on lipid-induced insulin resistance in skeletal muscle with a focus on the evidence from human studies. Furthermore, we discuss the available data that provides supporting mechanistic information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号