首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1013篇
  免费   21篇
  国内免费   11篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   10篇
  2019年   18篇
  2018年   19篇
  2017年   15篇
  2016年   17篇
  2015年   15篇
  2014年   48篇
  2013年   56篇
  2012年   47篇
  2011年   75篇
  2010年   84篇
  2009年   63篇
  2008年   64篇
  2007年   59篇
  2006年   56篇
  2005年   58篇
  2004年   49篇
  2003年   50篇
  2002年   47篇
  2001年   19篇
  2000年   35篇
  1999年   34篇
  1998年   15篇
  1997年   12篇
  1996年   18篇
  1995年   10篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1045条查询结果,搜索用时 15 毫秒
91.
Tumova K  Zhang D  Tiberi M 《FEBS letters》2004,576(3):461-467
We investigate whether the fourth intracellular loop (IL4) of D1 and D5 dopaminergic receptors (D1R, D5R) confers D1-like subtype-specific signaling properties. Using chimeric receptors (D1R-IL4B and D5R-IL4A), we show that swapping of IL4 leads to a switch in dopamine affinity and constitutive activity of D1R and D5R. Dopamine potency was reduced for both chimeras in comparison with wild-type receptors. Moreover, dopamine-mediated maximal activation was drastically increased in cells expressing D1R-IL4B when compared with those harboring D5R-IL4A or wild-type receptors. In conclusion, IL4 plays a pivotal role in imparting subtype-specific ligand binding and activation properties to highly homologous seven-transmembrane receptors.  相似文献   
92.
The cobalt(III) complexes of 4,11-diacetato-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (1), [Co(1)]PF6, and 4,11-diacetamido-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (2), [Co(2)][PF6]3, have been synthesized and characterized. The crystal structure of [Co(1)]PF6 consists of an octahedral cobalt(III) cation coordinated to all four ligand nitrogen donors in the macrobicycle’s cavity, as well as to the deprotonated carboxylate oxygen atoms of both pendant arms. Analytical and spectroscopic data indicates that the ligand in [Co(2)][PF6]3 is not deprotonated, suggesting coordination through the amide carbonyl oxygens. Study of the electronic spectra of these novel complexes and comparison with data from related cobalt(III) complexes characterizes the ligands as strong field with Δ0=24,040 and Δ0=24,250 cm−1 for 1 and 2, respectively. Cyclic voltammograms were obtained for both complexes with large variations observed due to the differences in ligand charge and coordination.  相似文献   
93.
N-(2-mercaptopropionyl)glycine (tiopronin) monolayer-protected silver particles were partially displaced by single-stranded oligonucleotides through ligand exchanges. The oligonucleotide-displaced particles could be hybridized with complementary fluorophore-labeled oligonucleotides. Both the oligonucleotide-displaced and hybridized particles could be aggregated by electrostatic interactions with salt in buffer solution, and the aggregates displayed enhanced luminescence from fluorophores. This result suggests the possible application of surface-enhanced fluorescence from metallic nanoparticle aggregation for DNA detection.  相似文献   
94.
A fluorescent binding assay was developed to investigate the effects of mutagenesis on the binding affinity and substrate specificity of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. The chitin-binding domain was genetically fused to the N-terminus of a green fluorescent protein, and the polyhistidine-tagged hybrid protein was expressed in Escherichia coli. Residues likely to be involved in the binding site were mutated and their contributions to binding and substrate specificity were evaluated by affinity electrophoresis and depletion assays. The experimental binding isotherms were analyzed by non-linear regression using a modified Langmuir equation. Non-conservative substitution of tryptophan residue (W687) nearly abolished chitin-binding affinity and dramatically lowered chitosan binding while retaining the original level of curdlan binding. Double mutation E668K/P689A had altered specificity for several substrates and also impaired chitin binding significantly. Other substitutions in the binding site altered substrate specificity but had little effect on overall affinity for chitin. Interestingly, mutation T682A led to a higher specificity towards chitinous substrates than the wildtype. Furthermore, the ChBD-GFP hybrid protein was tested for use in diagnostic staining of cell walls of fungi and yeast and for the detection of fungal infections in tissue samples.  相似文献   
95.
Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells   总被引:13,自引:0,他引:13  
Shieh DE  Chen YY  Yen MH  Chiang LC  Lin CC 《Life sciences》2004,74(18):2279-2290
Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible cells. However, the signaling pathway of their apoptotic effects remains undefined. In this study, the cytotoxic effect of emodin on various human hepatoma cell lines was investigated. Results demonstrated that emodin exhibited strongly suppressing effect on HepG2/C3A, PLC/PRF/5, and SK-HEP-1 cells, with the IC(50) value of 42.5, 46.6, and 53.1 microM, respectively. Furthermore, emodin induced apoptosis in HepG2/C3A cells was clearly verified by the appearance of DNA fragmentation and sub-G(1) accumulation. Besides, HepG2/C3A cells were found to be arrested in G(2)/M phase after the cells were treated with 60 microM emodin for 48 h. Moreover, significant increase in the levels of apoptosis-related signals such as p53 (419.3 pg/ml), p21 (437.4 units/ml), Fas (6.6 units/ml), and caspase-3 (35.4 pmol/min) were observed in emodin treated HepG2/C3A cells. Taken together, emodin displays effective inhibitory effects on the growth of various human hepatoma cell lines and stimulates the expression of p53 and p21 that resulted in the cell cycle arrest of HepG2/C3A cells at G(2)/M phase. Results also suggest that emodin-induced apoptosis in HepG2/C3A cells were mediated through the activation of p53, p21, Fas/APO-1, and caspase-3. It implies that emodin could be a useful chemotherapeutical agent for treatment of hepatocellular carcinoma (HCC).  相似文献   
96.
97.
Dimeric ligands can be potent inhibitors of protein-protein or enzyme-substrate interactions. They have increased affinity and specificity toward their targets due to their ability to bind two binding sites simultaneously and are therefore attractive in drug design. However, few studies have addressed the kinetic mechanism of interaction of such bivalent ligands. We have investigated the binding interaction of a recently identified potent plasma-stable dimeric pentapeptide and PDZ1–2 of postsynaptic density protein-95 (PSD-95) using protein engineering in combination with fluorescence polarization, isothermal titration calorimetry, and stopped-flow fluorimetry. We demonstrate that binding occurs via a two-step process, where an initial binding to either one of the two PDZ domains is followed by an intramolecular step, which produces the bidentate complex. We have determined all rate constants involved in the binding reaction and found evidence for a conformational transition of the complex. Our data demonstrate the importance of a slow dissociation for a successful dimeric ligand but also highlight the possibility of optimizing the intramolecular association rate. The results may therefore aid the design of dimeric inhibitors in general.  相似文献   
98.
In actinomycetes, the onset of secondary metabolite biosynthesis is often triggered by the quorum-sensing signal γ-butyrolactones (GBLs) via specific binding to their cognate receptors. However, the presence of multiple putative GBL receptor homologues in the genome suggests the existence of an alternative regulatory mechanism. Here, in the model streptomycete Streptomyces coelicolor, ScbR2 (SCO6286, a homologue of GBL receptor) is shown not to bind the endogenous GBL molecule SCB1, hence designated “pseudo” GBL receptor. Intriguingly, it could bind the endogenous antibiotics actinorhodin and undecylprodigiosin as ligands, leading to the derepression of KasO, an activator of a cryptic type I polyketide synthase gene cluster. Likewise, JadR2 is also a putative GBL receptor homologue in Streptomyces venezuelae, the producer of chloramphenicol and cryptic antibiotic jadomycin. It is shown to coordinate their biosynthesis via direct repression of JadR1, which activates jadomycin biosynthesis while repressing chloramphenicol biosynthesis directly. Like ScbR2, JadR2 could also bind these two disparate antibiotics, and the interactions lead to the derepression of jadR1. The antibiotic responding activities of these pseudo GBL receptors were further demonstrated in vivo using the lux reporter system. Overall, these results suggest that pseudo GBL receptors play a novel role to coordinate antibiotic biosynthesis by binding and responding to antibiotics signals. Such an antibiotic-mediated regulatory mechanism could be a general strategy to coordinate antibiotic biosynthesis in the producing bacteria.  相似文献   
99.
Tumor necrosis factor (TNF)-α, a homotrimeric, pleiotropic cytokine, is secreted in response to inflammatory stimuli in diseases such as rheumatoid arthritis and inflammatory bowel disease. TNF-α mediates both apoptosis and inflammation, stimulating an inflammatory cascade through the non-canonical pathway of NF-κB activation, leading to increased nuclear RelB and p52. In contrast, the common food additive carrageenan (CGN) stimulates inflammation through both the canonical and non-canonical pathways of NF-κB activation and utilizes the adaptor molecule BCL10 (B-cell leukemia/lymphoma 10). In a series of experiments, colonic epithelial cells and mouse embryonic fibroblasts were treated with TNF-α and carrageenan in order to simulate the possible effects of exposure to dietary CGN in the setting of a TNF-α-mediated inflammatory disease process. A marked increase in secretion of IL-8 occurred, attributable to synergistic effects on phosphorylated NF-κB-inducing kinase (NIK) in the non-canonical pathway. TNF-α induced the ubiquitination of TRAF2 (TNF receptor-associated factor 2), which interacts with NIK, and CGN induced phosphorylation of BCL10, leading to increased NIK phosphorylation. These results suggest that TNF-α and CGN in combination act to increase NIK phosphorylation, thereby increasing activation of the non-canonical pathway of NF-κB activation. In contrast, the apoptotic effects of TNF-α, including activation of caspase-8 and PARP-1 (poly(ADP-ribose) polymerase 1) fragmentation, were markedly reduced in the presence of CGN, and CGN caused reduced expression of Fas. These findings demonstrate that exposure to CGN drives TNF-α-stimulated cells toward inflammation rather than toward apoptotic cell death and suggest that CGN exposure may compromise the effectiveness of anti-TNF-α therapy.  相似文献   
100.
We have optimized an immunohistochemical double-staining method combining immunohistochemical lymphocyte lineage marker detection and apoptosis detection with terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling. The method was used to trace Fas-mediated apoptosis in human reactive lymph nodes according to cell lineage and anatomical location. In addition to Fas, we also studied the expression of Fas ligand (FasL), CD3, CD20, CD19, CD23, and CD68 of apoptotic cells. The presence of simultaneous Fas and FasL positivity indicated involvement of activation-induced death in the induction of paracortical apoptosis. FasL expression in the high endothelial venules might be an inductor of apoptosis of Fas-positive lymphoid cells. In addition to B-lymphocyte apoptosis in the germinal centers, there was often a high apoptosis rate of CD23-expressing follicular dendritic cells. In summary, our double-staining method provides valuable new information about the occurrence and mechanisms of apoptosis of different immune cell types in the lymph node compartments. Among other things, we present support for the importance of Fas/FasL–mediated apoptosis in lymph node homeostasis. (J Histochem Cytochem 58:131–140, 2010)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号