首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1013篇
  免费   21篇
  国内免费   11篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   10篇
  2019年   18篇
  2018年   19篇
  2017年   15篇
  2016年   17篇
  2015年   15篇
  2014年   48篇
  2013年   56篇
  2012年   47篇
  2011年   75篇
  2010年   84篇
  2009年   63篇
  2008年   64篇
  2007年   59篇
  2006年   56篇
  2005年   58篇
  2004年   49篇
  2003年   50篇
  2002年   47篇
  2001年   19篇
  2000年   35篇
  1999年   34篇
  1998年   15篇
  1997年   12篇
  1996年   18篇
  1995年   10篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1045条查询结果,搜索用时 546 毫秒
41.
We analysed the spatial and temporal distribution of apoptosis in human cerebellum development, during embryonic and fetal periods. Cerebella excised from two human embryos (8 weeks old) and eight fetuses (12-22 weeks old), were paraffin embedded and serially sectioned. Apoptotic cells were identified by propidium iodide staining, and TUNEL. In addition, immunohistochemistry for suicide receptor Fas(APO-1/CD95) was performed. We determined the distribution and percentage of apoptotic cells as well as Fas(APO-1/CD95)-positive cells in different regions and stages of development. Apoptotic cells were seen in both proliferative zones and postmitotic regions along the migratory pathways as well as in the developing cerebellar cortex in all examined stages. The Fas(APO-1/CD95) immunoreactivity was present in all examined stages in a small population of apoptotic cells: either neuroblasts or differentiated cells in postmitotic zones. These findings suggest that apoptosis drives the selection of the cells which are committed to differentiate during the early stages of cerebellar development. The differences between apoptotic cells distribution and Fas receptor expression suggest that cell selection is driven by different apoptotic pathways.  相似文献   
42.
The PDZ domains of the protein tyrosine phosphatase PTP-BL mediate interactions by binding to specific amino acid sequences in target proteins. The solution structure of the second PDZ domain of PTP-BL, PDZ2, displays a compact fold with six β strands and two α-helices. A unique feature of this domain compared to the canonical PDZ fold is an extended flexible loop at the base of the binding pocket, termed L1, that folds back onto the protein backbone, a feature that is shared by both the murine and human orthologues. The structure of PDZ2 differs significantly from the orthologous human structure. A comparison of structural quality indicators clearly demonstrates that the PDZ2 ensemble is statistically more reasonable than that of the human orthologue. The analysis of 15N relaxation data for PDZ2 shows a normal pattern, with more rigid secondary structures and more flexible loop structures. Close to the binding pocket, Leu85 and Thr88 display greater mobility when compared to surrounding residues. Peptide binding studies demonstrated a lack of interaction between murine PDZ2 and the C terminus of the murine Fas/CD95 receptor, suggesting that the Fas/CD95 receptor is not an in vivo target for PDZ2. In addition, PDZ2 specifically binds the C termini of both human Fas/CD95 receptor and the RIL protein, despite RIL containing a non-canonical PDZ-interacting sequence of E-x-V. A model of PDZ2 with the RIL peptide reveals that the PDZ2 binding pocket is able to accommodate the bulkier side-chain of glutamic acid while maintaining crucial protein to peptide hydrogen bond interactions.  相似文献   
43.
Two ovarian cancer cell lines named NOS4 and SKOV-3 have been shown to have different sensitivities to a cytotoxic anti-Fas antibody, CH-11. Although both cell lines express Fas molecules on the cell surfaces at the same intensities, apoptosis is induced by CH-11 in NOS4 cells but not in SKOV-3 cells. In this study, the different apoptosis-sensitivities of these cells were assessed. Both cell lines express almost the same levels of FADD, RIP, c-FLIP, FAP-1, Bax, Bcl-2 and Bcl-XL. Evidence of caspase-8, caspase-9 and caspase-3 activation and of cleavage of PARP and Bid was obtained in NOS4 cells but not in SKOV-3 cells. When triggered by FasL protein, DNA fragmentation and caspase-8 activation were observed in SKOV-3 cells, though they were not as clear as in NOS4 cells. All the anti-Fas antibody-mediated signals for apoptosis induction in NOS4 cells were completely blocked by a caspase-8-specific inhibitor, Z-IETD-FMK. These results indicate that the different sensitivities to the anti-Fas antibody are solely dependent on the activation of caspase-8, which could be influenced by yet unknown qualitative or quantitative abnormalities in molecules involved in DISC formation.  相似文献   
44.
1. For a better understanding of the biological features of astrocytic tumors, we investigated apoptosis and its pathway, especially in the interaction between Fas and Fas ligand (FasL).2. We examined the presence of apoptosis in human astrocytic brain tumors by terminal deoxynucleotidyl transferase (TdT)-mediated d-UTP-biotin nick end labeling (TUNEL) and then apoptotic index (AI) was calculated. We also examined the distribution of Fas and FasL-positive tumor cells immunohistochemically. Labeling index (LI) for Fas and FasL was calculated as Fas-LI and FasL-LI, respectively, and compared to AI.3. Tumor cells expressing both Fas and FasL were TUNEL positive. Such cells were distributed sparsely in low-grade astrocytomas, but focally in glioblastomas. There was a close correlation among AI, Fas-LI, and FasL-LI, and astrocytic tumors with higher AI were associated with a longer survival time than that with lower AI.4. It was concluded that the Fas system may be involved in the apoptosis of astrocytic tumors, and AI can be a useful parameter for assessing prognosis of astrocytic tumors.  相似文献   
45.
Fas ligand (FasL) has been implicated in cytotoxic T lymphocyte (CTL)- and natural killer (NK) cell-mediated cytotoxicity. In the present study, we investigated the localization of FasL in murine CTL and NK cells. Immunocytochemical staining showed that FasL was stored in cytoplasmic granules of CD8+ CTL clones and in vivo activated CTL and NK cells, where perforin and granzyme A also resided. Immunoelectron microscopy revealed that FasL was localized on outer membrane of the cytoplasmic granules, while perforin was localized in internal vesicles. Western blot analysis showed that the membrane-type FasL of 40 kDa was stored in CD8+ CTL clones but not in CD4+ CTL clones. By utilizing a granule exocytosis inhibitor (TN16), we demonstrated that FasL translocated onto cell surface upon degranulation of anti-CD3-stimulated CD8+ CTL clones. Moreover, TN16 markedly inhibited the FasL-mediated cytotoxicity by CD8+ T cell clones and NK cells. These results suggested a substantial contribution of FasL to granule exocytosis-mediated target cell lysis by CD8+ CTL and NK cells.  相似文献   
46.
The purpose of this study was to determine the effect of hypoxia on caspase-8 and -9 gene and protein expression and activity in corneal epithelium. Non-transformed human corneal epithelial cells (HCEC) were cultured in 2% oxygen. A cDNA expression array coupled with densitometric analysis was used to compare relative mRNA expression levels of 96 apoptosis-related genes in hypoxic and normoxic HCEC. Caspase-8, caspase-9, FLIP, Fas, FasL, and TNF protein expression was assessed further using Western blot analysis and ELISA. Caspase-8 and -9 activities were measured using a fluorometric activity assay. Hypoxia did not affect caspase-8 or -9 gene or protein expression in HCEC, however caspase-9 activity was significantly increased. Hypoxia significantly suppressed the activity of caspase-8. FLIP and Fas gene and protein expression were not significantly altered in hypoxic cells compared to normoxic controls. mRNA and protein levels of TNF and TNFR-1 were significantly decreased, while FasL mRNA and proteins levels were significantly increased in hypoxic HCEC. In corneal epithelium stressed by hypoxia caspase-9 activity is upregulated, suggesting that apoptosis proceeds via the mitochondrial pathway. Caspase-8 activity may be suppressed because the loss of TNF and TNFR-1 gene and protein expression inhibits the initial formation of a death signaling complex.  相似文献   
47.
48.
Fas (CD95/Apo-1) exists both in membrane-bound and in biologically active soluble (s) forms. Ligation of membrane-expressed Fas can induce apoptosis, and Fas-mediated signaling seems to be involved in T-cell-induced apoptosis of human acute myelogenous leukemia (AML) blasts. The local release of sFas by AML blasts may then function as a protective mechanism by competing with membrane-bound Fas for binding sites on the common Fas ligand (FasL). sFas was released by AML blasts during in vitro culture, and this release was modulated by several cytokines that can be secreted by activated T cells. Increased levels of sFas could be detected during in vitro activation of T cells in the presence of native AML accessory cells, and this was observed both for (i) mitogenic activation of CD4+ and CD8+ T cell clones derived from acute leukemia patients with therapy-induced leukopenia and (ii) allostimulated activation of T cells derived from normal donors. However, local in vivo levels of sFas will also be influenced by variations in systemic levels. High serum levels of sFas were detected in acute leukemia patients during chemotherapy-induced cytopenia, but these levels decreased during complicating bacterial infections. In contrast, serum levels of sFasL were normal in leukopenic patients. The present results support the hypothesis that local release of sFas can function as a protective mechanism against AML-reactive T cells, but the effects of this local release are, in addition, modulated by variations in systemic levels of sFas (but not sFasL). Received: 9 March 2000 / Accepted: 25 May 2000  相似文献   
49.
 Recent studies have suggested that Fas ligand (FasL+) tumor cells can induce apoptosis in Fas+ T cells. However, the effect of growth of FasL+ tumors in vivo, on lymphoid tissues of the host is not clear and therefore was the subject of this investigation. Injection of FasL+ LSA tumor caused a significant decrease in cellularity of the thymus and spleen, resulting from marked apoptosis, in syngeneic C57BL/6+/+ (wild-type) but not C57BL/6-lpr/lpr (Fas-deficient) mice. The tumor-induced toxicity resulted from tumor-derived rather than host-derived FasL, inasmuch as LSA tumor growth in C57BL/6-gld/gld (FasL-defective) mice, induced marked apoptosis and toxicity in the thymus and spleen. The LSA tumor growth induced a significant decrease in the percentage of CD4+CD8+ T cells in the thymus of C57BL/6+/+ mice and an increase in the percentage of CD4+, CD8+ and CD4CD8 T cells. Of the four subpopulations tested, the CD4+CD8+ T cells showed maximum apoptosis. The LSA (FasL+) but not P815(FasL) tumor cell lysates and culture supernatants induced marked apoptosis in Fas+ thymocytes, when tested both in vitro and in vivo. The LSA-tumor-induced apoptosis in vitro was inhibited by antibodies against FasL or by caspase and other inhibitors of apoptosis. Chemotherapy of LSA-tumor-bearing C57BL/6+/+ mice at advanced stages of tumor growth failed to cure the mice, whereas, more than 80% of LSA-tumor-bearing C57BL/6-lpr/lpr mice, similarly treated, survived. Together, the current study demonstrates that FasL produced by LSA tumor cells is functional in vivo and can cause severe toxicity in lymphoid organs of the host. Also, Fas/FasL interactions may play an important role in the successful chemotherapy of FasL-bearing tumor. Received: 31 August 1999 / Accepted: 12 November 1999  相似文献   
50.
Inducible resistance to Fas—mediated apoptosis in B cells   总被引:6,自引:0,他引:6  
Rothstein TL 《Cell research》2000,10(4):245-266
Apoptosis produced in B cells through Fas(APO-1,CD95) triggering is regulated by signals derived from other surface receptors:CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death,whereas antigen receptor engagement,or IL-4R engagement,inhibits Fas killing and in so doing induces a state of Fas-resistance,even in otherwise sensitive,CD40-stimulated targets.Surface immunoglobulin and IL-4R utilize at least partially distinct path ways to produce Fas-resistance that differentially depend on PKC and STAT6,respectively.Further,surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk,requires NF-κB,and entails new macromolecular synthesis.Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products,Bcl-XL and FLIP,and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule).faim was identified by differential display and exists in two alternatively spliced forms;faim-S is broadly expressed,but faim-L expression is tissue-specific.The FAIM sequence is highly evolu tionarily conserved,suggesting an important role for this molecule throughout phylogeny.Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells,whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity.Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion,and malignant lymphocytes to impede anti-tumor immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号