首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7375篇
  免费   224篇
  国内免费   261篇
  7860篇
  2023年   47篇
  2022年   90篇
  2021年   116篇
  2020年   98篇
  2019年   170篇
  2018年   216篇
  2017年   100篇
  2016年   111篇
  2015年   158篇
  2014年   402篇
  2013年   495篇
  2012年   272篇
  2011年   429篇
  2010年   259篇
  2009年   386篇
  2008年   426篇
  2007年   400篇
  2006年   402篇
  2005年   407篇
  2004年   340篇
  2003年   305篇
  2002年   253篇
  2001年   157篇
  2000年   167篇
  1999年   177篇
  1998年   168篇
  1997年   155篇
  1996年   125篇
  1995年   136篇
  1994年   99篇
  1993年   75篇
  1992年   77篇
  1991年   64篇
  1990年   57篇
  1989年   50篇
  1988年   56篇
  1987年   47篇
  1986年   35篇
  1985年   50篇
  1984年   52篇
  1983年   36篇
  1982年   29篇
  1981年   28篇
  1980年   24篇
  1979年   24篇
  1978年   16篇
  1977年   17篇
  1976年   19篇
  1975年   11篇
  1974年   11篇
排序方式: 共有7860条查询结果,搜索用时 0 毫秒
11.
Seven strains of extremely halophilic bacteria (Halobacterium spp., Halococcus spp., and Haloarcula sp.) fixed CO2 under light and dark conditions. Light enhanced CO2 fixation in Halobacterium halobium but inhibited it in Halobacterium volcanii and Haloarcula strain GN-1. Propionate stimulated 14CO2 incorporation in some strains, but inhibited it in others. Semi-starvation in basal salts plus glycerol induced enhanced CO2 fixation rates. 14CO2 fixation in semi-starved cells was stimulated by NH 4 + or pyruvate and inhibited by succinate and acetate in most strains. No possible reductant was found. In cell-free extracts of H. halobium, NH 4 + but not propionate stimulated 14CO2 fixation. No RuBP carboxylase activity was detected. The main 14C-labeled -keto acid detected after a 2-min incubation with 14CO2 and pyruvate was pyruvate. Little or no -ketobutyrate was detected among the early products of propionate-stimulated CO2 fixation. Glycine was the major amino acid synthesized during a 2-min incubation with NH 4 + , propionate, and 14CO2. Propionate-stimulated CO2 fixation was sensitive to trimethoprim and insensitive to avidin. A novel pathway for non-reductive CO2 fixation involving a glycine synthase reaction with CO2, NH 4 + , and a methyl carbon derived from the -carbon cleavage of propionate is tentatively proposed.Abbreviations used BBS buffered basal salts - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MOPS 3-(N-morpholino)propanesulfonic acid - DNPH 2,4-dinitrophenylhydrazine - DNP dinitrophenyl - TLC thin-layer chromatography - FH4 tetrahydrofolate This work was supported by National Science Foundation grant PCM-8116330 and Petroleum Research Fund grant PRF 13704-AC2  相似文献   
12.
Dihydrofolate reductase (DHFR) and thymidylate synthase (TS) activities from cell suspension cultures of Daucus carota were shown to copurify on (NH4)2SO4 fractionation, DEAE Sephadex and methotrexate-Sepharose affinity chromatography and to share approximately the same Mr(183 kDa and 185 kDa respectively) as judged by gel filtration on Sephacryl S-200.The copurified protein migrated as a single band on polyacrylamide gel electrophoresis under denaturing conditions.Both activities could be eluted from the same position of the native gel.Moreover, methotrexate-resistant cell lines which overproduce DHFR revealed to have a parallel higher level of TS. It is therefore proposed and discussed that in carrot, similarly to protozoa, TS and DHFR are present on a single bifunctional polypeptide of 58 kDa.  相似文献   
13.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   
14.
Summary A gene encoding acetolactate synthase was cloned from a chlorsulfuron-resistant mutant of Arabidopsis. The DNA sequence of the mutant gene differed from that of the wild type by a single base pair substitution. When introduced into tobacco by Ti plasmid-mediated transformation the gene conferred a high level of herbicide resistance. These results suggest that the cloned gene may confer agronomically useful levels of herbicide resistnace in other crop species, and that it may be useful as a selectable marker for plant transformation experiments.  相似文献   
15.
We isolated hybridomas that produced monoclonal antibodies specific for the UDP-galactose: sn -glycerol-3-phosphate α-D-galactosyltransferase (IFP synthase, EC 2.4.1.96), an enzyme involved in the volume regulation of Poterioochromonas malhamensis Peterfi. Western blotting of native gradient gels with the most reactive antibody S 162 revealed several immunoreactive proteins in crude homogenates suggesting the occurrence of multiple molecular mass species of the galactosyltransferase. The amount of the presumed enzyme monomer (64 kDa under native conditions) was strongly increased by a pH shift of crude homogenates from pH 8 to 6. During activation of the galactosyltransferase in the cell homogenate and also by shrinking the cells, the presumed enzyme monomer appeared to be proteolytically degraded generating stepwise products of 52 and 40 kDa. We assume that the proteolytically processed enzyme becomes highly active, but is very susceptible to further proteolytic degradation.  相似文献   
16.
Willi Jahnen  Klaus Hahlbrock 《Planta》1988,173(4):453-458
Characteristic enzymes of general phenylpropanoid metabolism (phenylalanine ammonialyase) and of the flavonoid-glycoside and furanocoumarin branch pathways (chalcone synthase and S-adenosyl-l-methionine: bergaptol O-methyltransferase, respectively) were localized immuno-histochemically in cross-sections of various aerial parts of parsley (Petroselinum crispum) at different stages of seedling development. Phenylalanine ammonia-lyase occurred predominantly in epidermal and oil-duct epithelial cells, but was also detectable in other tissue parts. The two pathway-specific enzymes were localized in the epidermis (chalcone synthase) and in oil ducts (bergaptol O-methyl-transferase). High chalcone-synthase concentrations occurred very early in leaf development and then declined. High levels of the methyltransferase were present at all times investigated. The temporal and spatial at all times investigated. The temporal and spatial distribution of all three enzymes is in agreement with the time courses and sites of accumulation of the biosynthetic end products.Abbreviations BMT S-adenosyl-l-methionine: bergaptol O-methyltransferase - CHS chalcone synthase - PAL phenylalanine ammonia-lyase  相似文献   
17.
Glyoxysomal citrate synthase (gCS) was purified from crude extracts of watermelon (Citrullus vulgaris Schrad.) cotyledons, yielding a homogenous protein with a subunit MW of 48 kDa. The enzyme was selectively inhibited by 5,5-dithiobis-(2-nitrobenzoic acid), allowing quantification in the presence of the mitochondrial isoenzyme (mCS). Differences were also observed with respect to inhibition by ATP (k i=2.6 mmol · l-1 for gCS, k i=0.33 mmol · l-1 for mCS). The antibodies prepared against gCS did not cross-react with mCS. The immunocytochemical localization of gCS by the indirect protein A-gold procedure was restricted to the glyoxysomal membrane or the peripheral matrix of glyoxysomes. Other compartments, e.g. the endoplasmic reticulum, were not labeled. Xenopus oocytes were used for the translation of watermelon polyadenylated RNA (poly(A)+RNA). A translation product with a MW of 51 kDa was immunoprecipitated by the anti-gCS antibodies. It was absent in controls without poly(A)+RNA or with preimmune serum. A similar translation product was also immunoprecipitated after cell-free synthesis of watermelon poly(A)+RNA in a reticulocyte system, in contrast to the in-vivo labeled gCS (48 kDa). It was concluded that gCS is synthesized as a higher-molecular-weight precursor.Abbreviations DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - gCS glyoxysomal citrate synthase - gMDH glyoxysomal malate dehydrogenase - k i inhibitor constant - mCS mitochondrial citrate synthase - OAA oxaloacetate - poly(A)+RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   
18.
Abstract Poly(3-hydroxybutyric acid) granules, which harbored only four major granule-associated proteins as revealed by SDS polyacrylamide gel electrophoresis, were isolated from crude cellular extracts of Chromatium vinosum D by centrifugation in a linear sucrose gradient. N-Terminal amino acid sequence determination identified two proteins of M r 41 000 and M r 40 000 as the phaE Cv and phaC Cv translational products, respectively, of C. vinosum D. In a previous study it was shown that both proteins are required for the expression opf poly(3-hydroxyalkanoic acid) synthase activity. The N-terminus of the third protein ( M r 17 000) exhibited no homology to other proteins. Lysozyme, which was during purification of the granules, exhibited a strong affinity to PHB granules and was identified as the fourth protein enriched with the granules.  相似文献   
19.
Summary The Brassica napus rapeseed cultivar Topas contains an acetohydroxyacid synthase (AHAS) multigene family consisting of five members (AHAS 1–5). DNA sequence analysis indicate that AHAS1 and AHAS3 share extensive homology. They probably encode the AHAS enzymes essential for plant growth and development. AHAS2 has diverged significantly from AHAS1 and AHAS3 and has unique features in the coding region of the mature polypeptide, transit peptide and upstream non-coding DNA, which raises the possibility that it has a distinct function. AHAS4 and AHAS5 have interrupted coding regions and may be defective. The complexity of the AHAS multigene family in the allotetraploid species B. napus is much greater than reported for Arabidopsis thaliana and Nicotiana tabacum. Analysis of the presumptive progenitor diploid species B. campestris and B. oleracea indicated that AHAS2, AHAS3 and AHAS4 originate from the A genome, whereas AHAS1 and AHAS5 originate from the C genome. Further variation within each of the AHAS genes in these species was found.  相似文献   
20.
Uta Holthaus  Klaus Schmitz 《Planta》1991,185(4):479-486
Indirect evidence for the site of stachyose biosynthesis has been provided by determining the occurrence and distribution of stachyose, raffinose and galactinol, the donor of the galactosyl moiety for stachyose synthesis, in Cucumis melo L. cv. Ranjadew. Studies of enzyme activities for the synthesis of these sugars and their distribution in different plant organs and isolates has led to the conclusion that stachyose is synthesized mainly in mature leaves and seeds. Nevertheless, stachyose-synthase activity varied with leaf age, the developmental stage of a plant, the growing season and the plant cultivar used. No stachyose or stachyose-synthase activity could be detected in isolated mesophyll protoplasts and chloroplasts, whereas both were found in a minor-vein-enriched fraction isolated from mature leaves. The conclusion that stachyose biosynthesis is associated with minor veins was confirmed by immunolocalization of the enzyme. Positive specific immunoreactivity of stachyose synthase with polyclonal anti-stachyose-synthase antibodies, labeled with protein A-gold, was detected in intermediary cells of leaf minor veins. The implication of this local synthesis of the main transport sugar for phloem loading in mature leaves of Cucumis melo is discussed.Abbreviation RUBPCase ribulose-1,5-bisphosphate carboxylase This work was supported by Deutsche Forschungsgemeinschaft. The excellent assistance of Ms. B. Müller in preparing the samples for electron microscopy is gratefully acknowledged. The authors thank Professor H.J. Schneider-Poetsch for anti-RuBPCase antibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号