首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   42篇
  国内免费   29篇
  2023年   22篇
  2022年   27篇
  2021年   24篇
  2020年   22篇
  2019年   24篇
  2018年   34篇
  2017年   27篇
  2016年   20篇
  2015年   23篇
  2014年   85篇
  2013年   82篇
  2012年   66篇
  2011年   85篇
  2010年   44篇
  2009年   22篇
  2008年   34篇
  2007年   27篇
  2006年   36篇
  2005年   30篇
  2004年   32篇
  2003年   19篇
  2002年   15篇
  2001年   11篇
  2000年   7篇
  1999年   15篇
  1998年   15篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   7篇
  1992年   7篇
  1991年   9篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   2篇
  1974年   3篇
  1973年   4篇
排序方式: 共有954条查询结果,搜索用时 15 毫秒
31.
32.
33.
An intrinsic pathway of apoptosis is regulated by the B-cell lymphoma-2 (Bcl-2) family proteins. We previously reported that a fine rheostatic balance between the anti- and pro-apoptotic multidomain Bcl-2 family proteins controls hepatocyte apoptosis in the healthy liver. The Bcl-2 homology domain 3 (BH3)-only proteins set this rheostatic balance toward apoptosis upon activation in the diseased liver. However, their involvement in healthy Bcl-2 rheostasis remains unknown. In the present study, we focused on two BH3-only proteins, Bim and Bid, and we clarified the Bcl-2 network that governs hepatocyte life and death in the healthy liver. We generated hepatocyte-specific Bcl-xL- or Mcl-1-knock-out mice, with or without disrupting Bim and/or Bid, and we examined hepatocyte apoptosis under physiological conditions. We also examined the effect of both Bid and Bim disruption on the hepatocyte apoptosis caused by the inhibition of Bcl-xL and Mcl-1. Spontaneous hepatocyte apoptosis in Bcl-xL- or Mcl-1-knock-out mice was significantly ameliorated by Bim deletion. The disruption of both Bim and Bid completely prevented hepatocyte apoptosis in Bcl-xL-knock-out mice and weakened massive hepatocyte apoptosis via the additional in vivo knockdown of mcl-1 in these mice. Finally, the hepatocyte apoptosis caused by ABT-737, which is a Bcl-xL/Bcl-2/Bcl-w inhibitor, was completely prevented in Bim/Bid double knock-out mice. The BH3-only proteins Bim and Bid are functionally active but are restrained by the anti-apoptotic Bcl-2 family proteins under physiological conditions. Hepatocyte integrity is maintained by the dynamic and well orchestrated Bcl-2 network in the healthy liver.  相似文献   
34.
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.  相似文献   
35.
36.
Cilia in ciliated cells consist of protruding structures that sense mechanical and chemical signals from the extracellular environment. Cilia are assembled with variety molecules via a process known as intraflagellar transport (IFT). What controls the length of cilia in ciliated cells is critical to understand ciliary disease such as autosomal dominant polycystic kidney disease, which involves abnormally short cilia. But this control mechanism is not well understood. Previously, multiple tubular cysts have been observed in the kidneys of max-interacting protein 1 (Mxi1)-deficient mice aged 6 months or more. Here, we clarified the relationship between Mxi1 inactivation and cilia disassembly. Cilia phenotypes were observed in kidneys of Mxi1-deficient mice using scanning electron microscopy to elucidate the effect of Mxi1 on renal cilia phenotype, and cilia disassembly was observed in Mxi1-deficient kidney. In addition, genes related to cilia were validated in vitro and in vivo using quantitative PCR, and Ift20 was selected as a candidate gene in this study. The length of cilium decreased, and p-ERK level induced by a cilia defect increased in kidneys of Mxi1-deficient mice. Ciliogenesis of Mxi1-deficient mouse embryonic fibroblasts (MEFs) decreased, and this abnormality was restored by Mxi1 transfection in Mxi1-deficient MEFs. We confirmed that ciliogenesis and Ift20 expression were regulated by Mxi1 in vitro. We also determined that Mxi1 regulates Ift20 promoter activity via Ets-1 binding to the Ift20 promoter. These results indicate that inactivating Mxi1 induces ciliary defects in polycystic kidney.  相似文献   
37.
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca2+, a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11.  相似文献   
38.
The Escherichia coli replication fork arrest complex Tus/Ter mediates site-specific replication fork arrest and homologous recombination (HR) on a mammalian chromosome, inducing both conservative “short tract” gene conversion (STGC) and error-prone “long tract” gene conversion (LTGC) products. We showed previously that bidirectional fork arrest is required for the generation of STGC products at Tus/Ter-stalled replication forks and that the HR mediators BRCA1, BRCA2 and Rad51 mediate STGC but suppress LTGC at Tus/Ter-arrested forks. Here, we report the impact of Ter array length on Tus/Ter-induced HR, comparing HR reporters containing arrays of 6, 9, 15 or 21 Ter sites—each targeted to the ROSA26 locus of mouse embryonic stem (ES) cells. Increasing Ter copy number within the array beyond 6 did not affect the magnitude of Tus/Ter-induced HR but biased HR in favor of LTGC. A “lock”-defective Tus mutant, F140A, known to exhibit higher affinity than wild type (wt)Tus for duplex Ter, reproduced these effects. In contrast, increasing Ter copy number within the array reduced HR induced by the I-SceI homing endonuclease, but produced no consistent bias toward LTGC. Thus, the mechanisms governing HR at Tus/Ter-arrested replication forks are distinct from those governing HR at an enzyme-induced chromosomal double strand break (DSB). We propose that increased spatial separation of the 2 arrested forks encountering an extended Tus/Ter barrier impairs the coordination of DNA ends generated by the processing of the stalled forks, thereby favoring aberrant LTGC over conservative STGC.  相似文献   
39.
  1. Download : Download high-res image (120KB)
  2. Download : Download full-size image
Highlights
  • •HLA-B*51 and ERAP1, but not ERAP2, are risk factors for Behçet's disease.
  • •The HLA-B*51 peptidome and the effects of ERAP1 and ERAP2 on it are analyzed.
  • •ERAP1 and ERAP2 alter multiple features of the HLA-B*51 peptidome in distinct ways.
  • •Both enzymes act independently with complementary and partially redundant functions.
  相似文献   
40.
N-Methylpyrrolidone is a solvent molecule which has been shown to compete with acetyl-lysine-containing peptides for binding to bromodomains. From crystallographic studies, it has also been shown to closely mimic the acetamide binding motif in several bromodomains, but has not yet been directly pursued as a fragment in bromodomain inhibition. In this paper, we report the elaboration of N-methylpyrrolidone as a potential lead in fragment-based drug design. Firstly, N-methylpyrrolidone was functionalised to provide points for chemical elaboration. Then, the moiety was incorporated into analogues of the reported bromodomain inhibitor, Olinone. X-ray crystallography revealed that the modified analogues showed comparable binding affinity and structural mimicry to Olinone in the bromodomain binding site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号