首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3656篇
  免费   140篇
  国内免费   91篇
  3887篇
  2023年   26篇
  2022年   40篇
  2021年   54篇
  2020年   49篇
  2019年   71篇
  2018年   75篇
  2017年   52篇
  2016年   51篇
  2015年   155篇
  2014年   410篇
  2013年   371篇
  2012年   419篇
  2011年   425篇
  2010年   308篇
  2009年   112篇
  2008年   101篇
  2007年   120篇
  2006年   95篇
  2005年   71篇
  2004年   84篇
  2003年   72篇
  2002年   59篇
  2001年   48篇
  2000年   42篇
  1999年   36篇
  1998年   29篇
  1997年   25篇
  1996年   19篇
  1995年   31篇
  1994年   24篇
  1993年   23篇
  1992年   21篇
  1991年   19篇
  1990年   17篇
  1989年   13篇
  1988年   16篇
  1987年   16篇
  1986年   10篇
  1985年   28篇
  1984年   43篇
  1983年   23篇
  1982年   24篇
  1981年   21篇
  1980年   31篇
  1979年   20篇
  1978年   16篇
  1977年   16篇
  1976年   13篇
  1975年   8篇
  1973年   13篇
排序方式: 共有3887条查询结果,搜索用时 15 毫秒
71.
72.
Basic fibroblast growth factor (bFGF) is a therapeutic target of anti-angiogenesis. Here, we report that a novel sulfated glycopeptide derived from Gekko swinhonis Guenther (GSPP), an anticancer drug in traditional Chinese medicine, inhibits tumor angiogenesis by targeting bFGF. GSPP significantly decreased the production of bFGF in hepatoma cells by suppressing early growth response-1. GSPP inhibited the release of bFGF from extracellular matrix by blocking heparanase enzymatic activity. Moreover, GSPP competitively inhibited bFGF binding to heparin/heparan sulfate via direct binding to bFGF. Importantly, GSPP abrogated the bFGF-stimulated proliferation and migration of endothelial cells, whereas it had no inhibitory effect on endothelial cells in the absence of bFGF. Further study revealed that GSPP prevented bFGF-induced neovascularization and inhibited tumor angiogenesis and tumor growth in a xenograft mouse model. These results demonstrate that GSPP inhibits tumor angiogenesis by blocking bFGF production, release from the extracellular matrix, and binding to its low affinity receptor, heparin/heparan sulfate.  相似文献   
73.
74.
75.
MYH9-related diseases (MYH9-RD) are a group of autosomal dominant diseases caused by mutations in the MYH9 gene, which are featured by thrombocytopenia, giant platelets and granulocyte cytoplasmic inclusion bodies. MYH9-RD patients generally suffer from bleeding syndromes, progressive kidney disease, deafness, or cataracts. Here, we reported on a case of MYH9-RD. A novel heterozygous mutation of MYH9 (c.2344-2345delGTinsTA, p.T782Y) was discovered by targeted sequencing technology. Immunofluorescence analysis of neutrophils confirmed abnormal aggregation of MYH9 protein. The results of this study should expand the MYH9 gene mutation spectrum and provide reference for subsequent researchers and genetic counseling.  相似文献   
76.
When platelet cytoplasmic Ca2+ is increased by the ionophore A23187 in the presence of the protease inhibitor leupeptin, there is the coincident appearance of a cross-linked polymer and the partial disappearance of monomeric protein and glycoprotein units. In the absence of leupeptin only 30% of the polymer was formed. The disappearance of monomeric protein bands, as detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis, is prevented by histamine, which as a pseudodonor amine is a known inhibitor of transglutaminase-catalyzed cross-linking. [14C]Histamine, at a tracer concentration, is incorporated into the polymer as well as into myosin, glycoproteins IIB and III, actin and tropomyosin. The lose of monomeric protein bands is mostly due to their conversion into polymers. Control measurements show that leupeptin effectively inhibited platelet Ca2+-dependent proteases. The cross-linking processes bringing about the observed increase in polymer formation are thus the result of a Ca2+-dependent platelet transglutaminase activity. The latter is located in the platelet cytosol and has been identified as platelet factor XIII on the basis of its specific cross-linking of fibrin. Platelet factor XIII, upon activation, may function physiologically to couple membrane proteins to cytoplasmic structural proteins. Thus, a new concept is proposed for the stabilization of platelet membranes and platelets as they form the hemostatic plug.  相似文献   
77.
Summary A quantitative method is suggested for measuring the similarity of seasonal abundance patterns of different animal species. The method was applied to two sets of field data and produced biologically meaningful and interesting results.  相似文献   
78.
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) family members are essential and evolutionary conserved determinants of blood cell development and dispersal. In addition, VEGFs are integral to vascular growth and permeability with detrimental contributions to ischemic diseases and metastatic cancers. The PDGF/VEGF-receptor related (Pvr) protein is implicated in the migration and trophic maintenance of macrophage-like hemocytes in Drosophila melanogaster embryos. pvr mutants have a depleted hemocyte population and a breakdown in hemocyte distribution. Previous studies suggested redundant functions for the Pvr ligands, Pvf2 and Pvf3 in the regulation of hemocyte migration, proliferation, and size. However, the precise roles that Pvf2 and Pvf3 play in hematopoiesis remain unclear due to the lack of available mutants. To determine Pvf2 and Pvf3 functions in vivo, we generated a genomic deletion that simultaneously disrupts Pvf2 and Pvf3. From our studies, we identified contributions of Pvf2 and Pvf3 to the Pvr trophic maintenance of hemocytes. Furthermore, we uncovered a novel role for Pvfs in invasive migrations. We showed that Pvf2 and Pvf3 are not required for the directed migration of hemocytes, but act locally in epithelial cells to coordinate trans-epithelial migration of hemocytes. Our findings redefine Pvf roles in hemocyte migration and highlight novel Pvf roles in hemocyte invasive migration. These new parallels between the Pvr and PDGF/VEGF pathways extend the utility of the Drosophila embryonic system to dissect physiological and pathological roles of PDGF/VEGF-like growth factors.  相似文献   
79.
80.
The traditional method to fabricate a MXene based energy storage device starts from etching MAX phase particles with dangerous acid/alkali etchants to MXenes, followed by device assembly. This is a multistep protocol and is not environmentally friendly. Herein, an all‐in‐one protocol is proposed to integrate synthesis and battery fabrication of MXene. By choosing a special F‐rich electrolyte, MAX V2AlC is directly exfoliated inside a battery and the obtained V2CTX MXene is in situ used to achieve an excellent battery performance. This is a one‐step process with all reactions inside the cell, avoiding any contamination to external environments. Through the lifetime, the device experiences three stages of exfoliation, electrode oxidation, and redox of V2O5. While the electrode is changing, the device can always be used as a battery and the performance is continuously enhanced. The resulting aqueous zinc ion battery achieves outstanding cycling stability (4000 cycles) and rate performance (97.5 mAh g?1 at 64 A g?1), distinct from all reported aqueous MXene‐based counterparts with pseudo‐capacitive properties, and outperforming most vanadium‐based zinc ion batteries with high capacity. This work sheds light on the green synthesis of MXenes, provides an all‐in‐one protocol for MXene devices, and extends MXenes’ application in the aqueous energy storage field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号