首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2179篇
  免费   50篇
  国内免费   32篇
  2261篇
  2023年   9篇
  2022年   13篇
  2021年   18篇
  2020年   14篇
  2019年   19篇
  2018年   26篇
  2017年   16篇
  2016年   22篇
  2015年   112篇
  2014年   331篇
  2013年   270篇
  2012年   355篇
  2011年   360篇
  2010年   240篇
  2009年   38篇
  2008年   37篇
  2007年   38篇
  2006年   29篇
  2005年   33篇
  2004年   23篇
  2003年   25篇
  2002年   12篇
  2001年   16篇
  2000年   14篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   10篇
  1993年   8篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1989年   5篇
  1988年   7篇
  1987年   9篇
  1986年   4篇
  1985年   9篇
  1984年   13篇
  1983年   6篇
  1982年   9篇
  1981年   10篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1973年   4篇
  1970年   4篇
排序方式: 共有2261条查询结果,搜索用时 15 毫秒
71.
Cdc42 effector protein-4 (CEP4) was recently identified by our laboratory to be a substrate of multiple PKC isoforms in non-transformed MCF-10A human breast cells. The significance of phosphorylated CEP4 to PKC-stimulated motility of MCF-10A cells was evaluated. Single site mutants at Ser residues embedded in potential PKC consensus sites (Ser18, Ser77, Ser80, and Ser86) were individually replaced with Asp residues to simulate phosphorylation. Following expression in weakly motile MCF-10A cells, the S18D and S80D mutants each promoted increased motility, and the double mutant (S18D/S80D) produced a stronger effect. MS/MS analysis verified that Ser18 and Ser80 were directly phosphorylated by PKCα in vitro. Phosphorylation of CEP4 severely diminished its affinity for Cdc42 while promoting Rac activation and formation of filopodia (microspikes). In contrast, the phosphorylation-resistant double mutant S18A/S80A-CEP4 blocked CEP4 phosphorylation and inhibited motility of MCF-10A cells that had been stimulated with PKC activator diacylglycerol lactone. In view of the dissociation of phospho-CEP4 from Cdc42, intracellular binding partners were explored by expressing each CEP4 double mutant from a tandem affinity purification vector followed by affinity chromatography, SDS-PAGE, and identification of protein bands evident only with S18D/S80D-CEP4. One binding partner was identified as tumor endothelial marker-4 (TEM4; ARHGEF17), a guanine nucleotide exchange factor that is involved in migration. In motile cells expressing S18D/S80D-CEP4, knockdown of TEM4 inhibited both Rac activation and motility. These findings support a model in which PKC-mediated phosphorylation of CEP4 at Ser18 and Ser80 causes its dissociation from Cdc42, thereby increasing its affinity for TEM4 and producing Rac activation, filopodium formation, and cell motility.  相似文献   
72.
Aminoisoquinoline and isoquinoline groups have successfully replaced the more basic P1 benzamidine group of an acylsulfonamide factor VIIa inhibitor. Inhibitory activity was optimized by the identification of additional hydrophobic and hydrophilic P′ binding interactions. The molecular details of these interactions were elucidated by X-ray crystallography and molecular modeling. We also show that decreasing the basicity of the P1 group results in improved oral bioavailability in this chemotype.  相似文献   
73.
74.
75.
76.
This study was conducted to investigate the biological role of periostin in gastric cancer (GC) under hypoxia. Western blot analysis revealed that along with an upregulation of hypoxia‐inducible factor‐1alpha, there was a time‐dependent induction of periostin in MKN‐45 cells under hypoxia (2% O2), increasing by eightfold as compared to normoxic cells. Pretreatment with 30 µM PD98059, an inhibitor of ERK1/2, significantly reduced hypoxia‐stimulated periostin expression (P < 0.01). Periostin knockdown in MKN‐45 cells was achieved by specific small interfering RNA (siRNA). The conditioned medium from periostin siRNA‐transfected MKN‐45 cells induced significantly less (P < 0.01) endothelial tube formation than control siRNA‐transfected cells. Additionally, periostin silencing markedly decreased the mRNA expression and secretion of vascular endothelial growth factor (VEGF) in hypoxic MKN‐45 cells. Thus, our data suggest that periostin is a hypoxia‐response gene and mediates a cross talk between GC and endothelial cells under hypoxia, partially through regulation of the VEGF expression. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:364‐369, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21498  相似文献   
77.
Psoriasin (S100A7) is expressed in several epithelial malignancies including breast cancer. Although S100A7 is associated with the worst prognosis in estrogen receptor α-negative (ERα(-)) invasive breast cancers, its role in ERα-positive (ERα(+)) breast cancers is relatively unknown. We investigated the significance of S100A7 in ERα(+) breast cancer cells and observed that S100A7 overexpression in ERα(+) breast cancer cells, MCF7 and T47D, exhibited decreased migration, proliferation, and wound healing. These results were confirmed in vivo in nude mouse model system. Mice injected with S100A7-overexpressing MCF7 cells showed significant reduction in tumor size compared with mice injected with vector control cells. Further mechanistic studies revealed that S100A7 mediates the tumor-suppressive effects via a coordinated regulation of the β-catenin/TCF4 pathway and an enhanced interaction of β-catenin and E-cadherin in S100A7-overexpressing ERα(+) breast cancer cells. We observed down-regulation of β-catenin, p-GSK3β, TCF4, cyclin D1, and c-myc in S100A7-overexpressing ERα(+) breast cancer cells. In addition, we observed increased expression of GSK3β. Treatment with GSK3β inhibitor CHIR 99021 increased the expression of β-catenin and its downstream target c-myc in S100A7-overexpressing cells. Tumors derived from mice injected with S100A7-overexpressing MCF7 cells also showed reduced activation of the β-catenin/TCF4 pathway. Therefore, our studies reveal for the first time that S100A7-overexpressing ERα(+) breast cancer cells exhibit tumor suppressor capabilities through down-modulation of the β-catenin/TCF4 pathway both in vitro and in vivo. Because S100A7 has been shown to enhance tumorigenicity in ERα(-) cells, our studies suggest that S100A7 may possess differential activities in ERα(+) compared with ERα(-) cells.  相似文献   
78.
放射性标记受体分析表明毛喉萜(FSK)可以降低小鼠骨央细胞和腹腔巨噬细胞表面的胰岛素(INS)和粒细胞-巨噬细胞集落刺激因子(GM-CSF)受体数目,而且对GM-CSF的作用有剂量和时间依赖性,经FSK处理的巨噬细胞酸性磷酸酶活性增加,微丝更加舒展。  相似文献   
79.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号