排序方式: 共有48条查询结果,搜索用时 0 毫秒
11.
Hongzhen Wang Selvaraju Kanagarajan Junli HanMengshu Hao Yiyi YangAnneli Lundgren Peter E. Brodelius 《Journal of plant physiology》2014
Artemisinin, an antimalarial endoperoxide sesquiterpene, is synthesized in glandular trichomes of Artemisia annua L. A number of other enzymes of terpene metabolism utilize intermediates of artemisinin biosynthesis, such as isopentenyl and farnesyl diphosphate, and may thereby influence the yield of artemisinin. In order to study the expression of such enzymes, we have cloned the promoter regions of some enzymes and fused them to β-glucuronidase (GUS). In this study, we have investigated the expression of the monoterpene synthase linalool synthase (LIS) using transgenic A. annua carrying the GUS gene under the control of the LIS promoter. The 652 bp promoter region was cloned by the genome walker method. A number of putative cis-acting elements were predicted indicating that the LIS is driven by a complex regulation mechanism. Transgenic plants carrying the promoter-GUS fusion showed specific expression of GUS in T-shaped trichomes (TSTs) but not in glandular secretory trichomes, which is the site for artemisinin biosynthesis. GUS expression was observed at late stage of flower development in styles of florets and in TSTs and guard cells of basal bracts. GUS expression after wounding showed that LIS is involved in plant responsiveness to wounding. Furthermore, the LIS promoter responded to methyl jasmonate (MeJA). These results indicate that the promoter carries a number of cis-acting regulatory elements involved in the tissue-specific expression of LIS and in the response of the plant to wounding and MeJA treatment. Southern blot analysis indicated that the GUS gene was integrated in the A. annua genome as single or multi copies in different transgenic lines. Promoter activity analysis by qPCR showed that both the wild-type and the recombinant promoter are active in the aerial parts of the plant while only the recombinant promoter was active in roots. Due to the expression in TSTs but not in glandular trichomes, it may be concluded that LIS expression will most likely have little or no effect on artemisinin production. 相似文献
12.
13.
Smoothened is a member of the G-protein coupled receptor (GPCR) family responsible for the transduction of the Hedgehog signal to the intracellular effectors of the Hedgehog signaling pathway. Aberrant regulation of this receptor is implicated in many cancers but also in neurodegenerative disorders. Despite the pharmacological relevance of this receptor, very little is known about its functional mechanism and its physiological ligand. In order to characterize this receptor for basic and pharmacological interests, we developed the expression of human Smoothened in the yeast Saccharomyces cerevisiae and Smoothened was then purified. Using Surface Plasmon Resonance technology, we showed that human Smoothened was in a native conformational state and able to interact with its antagonist, the cyclopamine, both at the yeast plasma membrane and after purification. Thermostability assays on purified human Smoothened showed that this GPCR is relatively stable in the classical detergent dodecyl-β-d-maltoside (DDM). The fluorinated surfactant C8F17TAC, which has been proposed to be less aggressive towards membrane proteins than classical detergents, increased Smoothened thermostability in solution. Moreover, the replacement of a glycine by an arginine in the third intracellular loop of Smoothened coupled to the use of the fluorinated surfactant C8F17TAC during the mutant purification increased Smoothened thermostability even more. These data will be very useful for future crystallization assays and structural characterization of the human receptor Smoothened. 相似文献
14.
Luca Meoli Jörg Isensee Valeria Zazzu Christoph S. Nabzdyk Dian Soewarto Henning Witt Anna Foryst-Ludwig Ulrich KintscherPatricia Ruiz Noppinger 《Gene》2014
The G protein-coupled receptor 30 (GPR30) has been claimed as an estrogen receptor. However, the literature reports controversial findings and the physiological function of GPR30 is not fully understood yet. Consistent with studies assigning a role of GPR30 in the cardiovascular and metabolic systems, GPR30 expression has been reported in small arterial vessels, pancreas and chief gastric cells of the stomach. Therefore, we hypothesized a role of GPR30 in the onset and progression of cardiovascular and metabolic diseases. In order to test our hypothesis, we investigated the effects of a high-fat diet on the metabolic and cardiovascular profiles of Gpr30-deficient mice (GPR30-lacZ mice). We found that GPR30-lacZ female, rather than male, mice had significant lower levels of HDL along with an increase in fat liver accumulation as compared to control mice. However, two indicators of cardiac performance assessed by echocardiography, ejection fraction and fractional shortening were both decreased in an age-dependent manner only in Gpr30-lacZ male mice. Collectively our results point to a potential role of Gpr30 in preserving lipid metabolism and cardiac function in a sex- and age-dependent fashion. 相似文献
15.
16.
Igor Zelezetsky 《生物化学与生物物理学报:生物膜》2006,1758(9):1436-1449
An important class of cytolytic antimicrobial peptides (AMPs) assumes an amphipathic, α-helical conformation that permits efficient interaction with biological membranes. Host defence peptides of this type are widespread in nature, and numerous synthetic model AMPs have been derived from these or designed de novo based on their characteristics. In this review we provide an overview of the ‘sequence template’ approach which we have used to design potent artificial helical AMPs, to guide structure-activity relationship studies aimed at their optimization, and to help identify novel natural AMP sequences. Combining this approach with the rational use of natural and non-proteinogenic amino acid building blocks has allowed us to probe the individual effects on the peptides' activity of structural and physico-chemical parameters such as the size, propensity for helical structuring, amphipathic hydrophobicity, cationicity, and hydrophobic or polar sector characteristics. These studies furthermore provided useful insights into alternative modes of action for natural membrane-active helical peptides. 相似文献
17.
Sibes Bera Krishan K. Pandey Ajaykumar C. Vora Duane P. Grandgenett 《Journal of molecular biology》2009,389(1):183-9796
A macromolecular nucleoprotein complex in retrovirus-infected cells, termed the preintegration complex, is responsible for the concerted integration of linear viral DNA genome into host chromosomes. Isolation of sufficient quantities of the cytoplasmic preintegration complexes for biochemical and biophysical analysis is difficult. We investigated the architecture of HIV-1 nucleoprotein complexes involved in the concerted integration pathway in vitro. HIV-1 integrase (IN) non-covalently juxtaposes two viral DNA termini forming the synaptic complex, a transient intermediate in the integration pathway, and shares properties associated with the preintegration complex. IN slowly processes two nucleotides from the 3′ OH ends and performs the concerted insertion of two viral DNA ends into target DNA. IN remains associated with the concerted integration product, termed the strand transfer complex. The synaptic complex and strand transfer complex can be isolated by native agarose gel electrophoresis. In-gel fluorescence resonance energy transfer measurements demonstrated that the energy transfer efficiencies between the juxtaposed Cy3 and Cy5 5′-end labeled viral DNA ends in the synaptic complex (0.68 ± 0.09) was significantly different from that observed in the strand transfer complex (0.07 ± 0.02). The calculated distances were 46 ± 3 Å and 83 ± 5 Å, respectively. DNaseI footprint analysis of the complexes revealed that IN protects U5 and U3 DNA sequences up to ∼ 32 bp from the end, suggesting two IN dimers were bound per terminus. Enhanced DNaseI cleavages were observed at nucleotide positions 6 and 9 from the terminus on U3 but not on U5, suggesting independent assembly events. Protein-protein cross-linking of IN within these complexes revealed the presence of dimers, tetramers, and a larger multimer (> 120 kDa). Our results suggest a new model where two IN dimers individually assemble on U3 and U5 ends before the non-covalent juxtaposition of two viral DNA ends, producing the synaptic complex. 相似文献
18.
19.
目的分析连翘酯苷(FS)对小鼠脾脏T和B淋巴细胞增殖、分泌NO和TNF-α的影响,初步探讨其免疫调节作用机制。方法无菌操作分离小鼠脾脏,制备脾脏细胞并用含10%胎牛血清的RPMI 1640培养,在培养液中分别加入刺激剂刀豆蛋白(ConA)和脂多糖(LPS)以及不同浓度40、80、160μg/mL的FS共培养不同时间,采用MTT法检测T和B淋巴细胞的吸光度变化,ELISA和Griess法分别检测细胞分泌TNF-α和NO的水平。结果低浓度和中浓度FS对ConA诱导T淋巴细胞24 h和48 h后细胞增殖和存活率明显提高,诱导时间延长至72 h后FS明显抑制细胞转化;低浓度FS对LPS诱导脾脏B淋巴细胞24 h后细胞增殖和生存率显著提高;FS促进小鼠脾脏T和B淋巴细胞分泌NO;FS促进B淋巴细胞分泌TNF-α,中浓度FS促进T淋巴细胞分泌TNF-α而高浓度反而抑制其分泌。此外,FS对环磷酰胺(CY)处理小鼠的脾脏淋巴细胞体外增殖有明显影响,对细胞NO分泌影响不显著。结论结果提示FS可能通过影响小淋巴细胞增殖和细胞因子分泌而调节免疫细胞功能。 相似文献
20.
In this paper we present a comparative study of supported lipid bilayers (SLBs) and proteolipid sheets (PLSs) obtained from deposition of lactose permease (LacY) of Escherichia coli proteoliposomes in plane. Lipid matrices of two components, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), at a 3:1, mol/mol ratio, were selected to mimic the inner membrane of the bacteria. The aim was to investigate how species of different compactness and stiffness affect the integration, distribution and nanomechanical properties of LacY in mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) or 1,2-palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG). Both compositions displayed phase separation and were investigated by atomic force microscopy (AFM) imaging and force-spectroscopy (FS) mode. PLSs displayed two separated, segregated domains with different features that were characterised by FS and force-volume mode. We correlated the nanomechanical characteristics of solid-like gel phase (Lβ) and fluid liquid-crystalline phase (Lα) with phases emerging in presence of LacY. We observed that for both compositions, the extended PLSs showed a Lβ apparently formed only by lipids, whilst the second domain was enriched in LacY. The influence of the lipid environment on LacY organisation was studied by performing protein unfolding experiments using the AFM tip. Although the pulling experiments were unspecific, positive events were obtained, indicating the influence of the lipid environment when pulling the protein. A possible influence of the lateral surface pressure on this behaviour is suggested by the higher force required to pull LacY from DPPE:POPG than from POPE:POPG matrices. This is related to higher forces governing protein–lipid interaction in presence of DPPE. 相似文献