首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14748篇
  免费   632篇
  国内免费   1077篇
  2024年   24篇
  2023年   119篇
  2022年   220篇
  2021年   251篇
  2020年   226篇
  2019年   321篇
  2018年   294篇
  2017年   268篇
  2016年   258篇
  2015年   376篇
  2014年   534篇
  2013年   853篇
  2012年   487篇
  2011年   628篇
  2010年   460篇
  2009年   649篇
  2008年   725篇
  2007年   768篇
  2006年   838篇
  2005年   733篇
  2004年   625篇
  2003年   612篇
  2002年   525篇
  2001年   481篇
  2000年   452篇
  1999年   418篇
  1998年   449篇
  1997年   359篇
  1996年   322篇
  1995年   315篇
  1994年   296篇
  1993年   328篇
  1992年   260篇
  1991年   227篇
  1990年   240篇
  1989年   194篇
  1988年   151篇
  1987年   139篇
  1986年   132篇
  1985年   181篇
  1984年   179篇
  1983年   77篇
  1982年   108篇
  1981年   72篇
  1980年   69篇
  1979年   46篇
  1978年   29篇
  1977年   31篇
  1976年   22篇
  1974年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The coupling between the carbamoylmethyl ester of an N-protected amino acid or dipeptide (at 25 mM) and an amino acid amide (at 100 mM) was achieved using Aspergillus melleus protease in 1,1,1,3,3,3-hexafluoro-2-propanol/N,N-dimethylformamide (1:1, v/v); the coupling efficiencies were dependent largely on the combination of amino acid residues: e.g. the dipeptide yields after 48 h were for l-Ala + Gly, 100% and for l-Leu + l-Leu, 16%.  相似文献   
992.
Plasmid DNA (pBI-P5CS), containing the selectable neomycin phosphotransferase-II `npt II' gene for kanamycin resistance and the reporter -glucuronidase `gus' gene as well as the Vigna aconitifolia 1-pyrroline-5-carboxylate synthetase `P5CS' cDNA that encodes enzymes required for the biosynthesis of proline, was delivered into wheat plants using Agrobacterium-mediated gene transfer via indirect pollen system. Southern, northern and western blot analysis demonstrated that the foreign gene had been transferred, expressed and integrated into wheat chromosomal DNA. Salinity test indicated that proline acts as an osmoprotectant and its overproduction in transgenic wheat plants results in the increased tolerance to salt.  相似文献   
993.
The yeast protein cytochrome c peroxidase (Ccp1) is nuclearly encoded and imported into the mitochondrial intermembrane space, where it is involved in degradation of reactive oxygen species. It is known, that Ccp1 is synthesised as a precursor with a N-terminal pre-sequence, that is proteolytically removed during transport of the protein. Here we present evidence for a new processing pathway, involving novel signal peptidase activities. The mAAA protease subunits Yta10 (Afg3) and Yta12 (Rca1) were identified both to be essential for the first processing step. In addition, the Pcp1 (Ygr101w) gene product was found to be required for the second processing step, yielding the mature Ccp1 protein. The newly identified Pcp1 protein belongs to the rhomboid-GlpG superfamily of putative intramembrane peptidases. Inactivation of the protease motifs in mAAA and Pcp1 blocks the respective steps of proteolysis. A model of coupled Ccp1 transport and N-terminal processing by the mAAA complex and Pcp1 is discussed. Similar processing mechanisms may exist, because the mAAA subunits and the newly identified Pcp1 protein belong to ubiquitous protein families.  相似文献   
994.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.  相似文献   
995.
The emergence of compensatory drug-resistant mutations in HIV-1 protease challenges the common view of the reaction mechanism of this enzyme. Here, we address this issue by performing classical and ab initio molecular dynamics simulations (MD) on a complex between the enzyme and a peptide substrate. The classical MD calculation reveals large-scale protein motions involving the flaps and the cantilever. These motions modulate the conformational properties of the substrate at the cleavage site. The ab initio calculations show in turn that substrate motion modulates the activation free energy barrier of the enzymatic reaction dramatically. Thus, the catalytic power of the enzyme does not arise from the presence of a pre-organized active site but from the protein mechanical fluctuations. The implications of this finding for the emergence of drug-resistance are discussed.  相似文献   
996.
Mutations in alpha-synuclein, parkin and ubiquitin C-terminal hydrolase L1, and defects in 26/20S proteasomes, cause or are associated with the development of familial and sporadic Parkinson's disease (PD). This suggests that failure of the ubiquitin-proteasome system (UPS) to degrade abnormal proteins may underlie nigral degeneration and Lewy body formation that occur in PD. To explore this concept, we studied the effects of lactacystin-mediated inhibition of 26/20S proteasomal function and ubiquitin aldehyde (UbA)-induced impairment of ubiquitin C-terminal hydrolase (UCH) activity in fetal rat ventral mesencephalic cultures. We demonstrate that both lactacystin and UbA caused concentration-dependent and preferential degeneration of dopaminergic neurons. Inhibition of 26/20S proteasomal function was accompanied by the accumulation of alpha-synuclein and ubiquitin, and the formation of inclusions that were immunoreactive for these proteins, in the cytoplasm of VM neurons. Inhibition of UCH was associated with a loss of ubiquitin immunoreactivity in the cytoplasm of VM neurons, but there was a marked and localized increase in alpha-synuclein staining which may represent the formation of inclusions bodies in VM neurons. These findings provide direct evidence that impaired protein clearance can induce dopaminergic cell death and the formation of proteinaceous inclusion bodies in VM neurons. This study supports the concept that defects in the UPS may underlie nigral pathology in familial and sporadic forms of PD.  相似文献   
997.
A small 45 amino acid residue antifungal polypeptide was isolated from the bark of spindle tree (Euonymus europaeus L.). Though the primary structure of this so-called E. europaeus chitin-binding protein or Ee-CBP is highly similar to the hevein domain, it distinguishes itself from most previously identified hevein-type antimicrobial peptides (AMP) by the presence of two extra cysteine residues that form an extra disulfide bond. Due to these five disulfide bonds Ee-CBP is a remarkably stable protein. Agar diffusion and microtiterplate assays demonstrated that Ee-CBP is a potent antimicrobial protein. IC50-values as low as 1 μg/ml were observed for the fungus Botrytis cinerea. Comparative assays further demonstrated that Ee-CBP is a stronger inhibitor of fungal growth than Ac-AMP2 from Amaranthus caudatus seeds, which is considered one of the most potent antifungal hevein-type plant proteins.  相似文献   
998.
Lacombe T  Gabriel JM 《FEBS letters》2002,531(3):469-474
The human isopeptidase T (isoT) is a zinc-binding deubiquitinating enzyme involved in the disassembly of free K48-linked polyubiquitin chains into ubiquitin monomers. The catalytic site of this enzyme is thought to be composed of Cys335, Asp435, His786 and His795. These four residues were site-directed mutagenized. None of the mutants were able to cleave a peptide-linked ubiquitin dimer. Similarly, C335S, D435N and H795N mutants had virtually no activity against a K48-linked isopeptide ubiquitin dimer, which is an isoT-specific substrate that mimics the K48-linked polyubiquitin chains. On the other hand, the H786N mutant retained a partial activity toward the K48-linked substrate, suggesting that the His786 residue might not be part of the catalytic site. None of the mutations significantly affected the capacity of isoT to bind ubiquitin and zinc. Thus, the catalytic site of UBPs could resemble that of other cysteine proteases, which contain one Cys, one Asp and one His.  相似文献   
999.
黄秋葵组培快繁的研究   总被引:6,自引:0,他引:6  
黄秋葵 (HibiscusesculentusL .)为锦葵科一年生草本植物 ,别名羊角豆、秋葵。原产非洲 ,欧美及东南亚热带地区广泛栽培 (马传先 ,1999;李正应 ,1993;翁文 ,1997;雪珍等 ,1999)。黄秋葵是一种营养保健型蔬菜 ,其花、叶、芽、果均可食用 ,种子富含油脂、蛋白质及钾、钙、铁、锌、锰等矿物质 ,晒干后既可用于提取油脂和蛋白质 ,还可作为咖啡的添加剂或代用品。花、种子和根均可入药 ,对恶疮、痛疖有疗效。黄秋葵的愈伤组织在一定条件下比较容易产生体细胞胚并再生成完整植株 ,故黄秋葵的组培快繁研究也可为胚胎学研究和人…  相似文献   
1000.
The regulation of the open probability of the epithelial Na(+) channel (ENaC) by the extracellular concentration of Na(+), a phenomenon called "Na(+) self inhibition," has been well described in several natural tight epithelia, but its molecular mechanism is not known. We have studied the kinetics of Na(+) self inhibition on human ENaC expressed in Xenopus oocytes. Rapid removal of amiloride or rapid increase in the extracellular Na(+) concentration from 1 to 100 mM resulted in a peak inward current followed by a decline to a lower quasi-steady-state current. The rate of current decline and the steady-state level were temperature dependent and the current transient could be well explained by a two-state (active-inactive) model with a weakly temperature-dependent (Q(10)act = 1.5) activation rate and a strongly temperature-dependant (Q(10)inact = 8.0) inactivation rate. The steep temperature dependence of the inactivation rate resulted in the paradoxical decrease in the steady-state amiloride-sensitive current at high temperature. Na(+) self inhibition depended only on the extracellular Na(+) concentration but not on the amplitude of the inward current, and it was observed as a decrease of the conductance at the reversal potential for Na(+) as well as a reduction of Na(+) outward current. Self inhibition could be prevented by exposure to extracellular protease, a treatment known to activate ENaC or by treatment with p-CMB. After protease treatment, the amiloride-sensitive current displayed the expected increase with rising temperature. These results indicate that Na(+) self inhibition is an intrinsic property of sodium channels resulting from the expression of the alpha, beta, and gamma subunits of human ENaC in Xenopus oocyte. The extracellular Na(+)-dependent inactivation has a large energy of activation and can be abolished by treatment with extracellular proteases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号