首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133442篇
  免费   4789篇
  国内免费   1540篇
  139771篇
  2024年   585篇
  2023年   1279篇
  2022年   1848篇
  2021年   2902篇
  2020年   5300篇
  2019年   7696篇
  2018年   7080篇
  2017年   6411篇
  2016年   6127篇
  2015年   6583篇
  2014年   8808篇
  2013年   10204篇
  2012年   7468篇
  2011年   8412篇
  2010年   6803篇
  2009年   6135篇
  2008年   6279篇
  2007年   5804篇
  2006年   5355篇
  2005年   4590篇
  2004年   3917篇
  2003年   3518篇
  2002年   3032篇
  2001年   2113篇
  2000年   1444篇
  1999年   1215篇
  1998年   981篇
  1997年   778篇
  1996年   700篇
  1995年   624篇
  1994年   574篇
  1993年   445篇
  1992年   446篇
  1991年   357篇
  1990年   293篇
  1989年   241篇
  1988年   211篇
  1987年   184篇
  1986年   161篇
  1985年   272篇
  1984年   455篇
  1983年   336篇
  1982年   347篇
  1981年   264篇
  1980年   201篇
  1979年   194篇
  1978年   172篇
  1977年   143篇
  1976年   115篇
  1975年   108篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
32.
Zhang ZS  Lu YG  Liu XD  Feng JH  Zhang GQ 《Genetica》2006,127(1-3):295-302
Pollen abortion is one of the major reasons causing the inter-subspecific F1 hybrid sterility in rice and is due to allelic interaction of F1 pollen sterility genes. The microsporogenesis and microgametogenesis of Taichung 65 and its three F1 hybrids were comparatively studied by using techniques of differential interference contrast microscopy, semi-thin section light microscopy, epifluorescence microscopy and TEM. The results showed that there were differences among the cytological mechanisms of pollen abortion due to allelic interaction at the three F1 pollen sterility loci. The allelic interaction at S-a locus resulted in microspores unable to extend the protoplasm membrane with the enlargement of the microspore at the middle microspore stage and finally producing empty abortive pollen. The allelic interaction at S-b locus caused asynchronous development of microspores at the middle microspore stage producing stainable abortive pollen. The allelic interaction at S-c locus mainly led to the non-dissolution of the generative cell wall and finally caused the hybrid F1 mainly producing stainable abortive pollen. Genotypic identification indicated that the abortive pollen were those with S j allele.  相似文献   
33.
Anti-angiogenic therapy has recently been added to the panel of cancer therapeutics, but predictive biomarkers of response are still not available. In animal models, anti-angiogenic therapy causes tumor starvation by increasing hypoxia and impairing nutrients supply. It is thus conceivable that angiogenesis inhibition causes remarkable metabolic perturbations in tumors, although they remain largely uncharted. We review here recent acquisitions about metabolic effects of angiogenesis blockade in tumors and discuss the possibility that some metabolic features of tumor cells - i.e. their dependency from glucose as primary energy substrate - might affect tumor responses to anti-VEGF treatment.  相似文献   
34.
Chlorophyll reduction in the seed of Brassica can be achieved by downregulating its synthesis. To reduce chlorophyll synthesis, we have used a cDNA clone of Brassica napus encoding glutamate 1-semialdehyde aminotransferase (GSA-AT) to make an antisense construct for gene manipulation. Antisense glutamate 1-semialdehyde aminotransferase gene (Gsa) expression, directed by a Brassica napin promoter, was targeted specifically to the embryo of the developing seed. Transformants expressing antisense Gsa showed varying degrees of inhibition resulting in a range of chlorophyll reduction in the seeds. Seed growth and development were not affected by reduction of chlorophyll. Seeds from selfed transgenic plants germinated with high efficiency and growth of seedlings was vigorous. Seedlings from T2 transgenic lines segregated into three distinctive phenotypes: dark green, light green and yellow, indicating the dominant inheritance of Gsa antisense gene. These transgenic lines have provided useful materials for the development of a low chlorophyll seed variety of B. napus.  相似文献   
35.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   
36.
Studies of misfolded protein targeting to endoplasmic reticulum-associated degradation (ERAD) have largely focused on glycoproteins, which include the bulk of the secretory proteins. Mechanisms of targeting of nonglycosylated proteins are less clear. Here, we studied three nonglycosylated proteins and analyzed their use of known glycoprotein quality control and ERAD components. Similar to an established glycosylated ERAD substrate, the uncleaved precursor of asialoglycoprotein receptor H2a, its nonglycosylated mutant, makes use of calnexin, EDEM1, and HRD1, but only glycosylated H2a is a substrate for the cytosolic SCFFbs2 E3 ubiquitin ligase with lectin activity. Two nonglycosylated BiP substrates, NS-1κ light chain and truncated Igγ heavy chain, interact with the ERAD complex lectins OS-9 and XTP3-B and require EDEM1 for degradation. EDEM1 associates through a region outside of its mannosidase-like domain with the nonglycosylated proteins. Similar to glycosylated substrates, proteasomal inhibition induced accumulation of the nonglycosylated proteins and ERAD machinery in the endoplasmic reticulum-derived quality control compartment. Our results suggest a shared ERAD pathway for glycosylated and nonglycosylated proteins composed of luminal lectin machinery components also capable of protein-protein interactions.  相似文献   
37.
38.
《生命科学研究》2013,(6):538-542
细胞内多种蛋白质前体比如细胞基质金属蛋白酶、生长因子、激素、受体等在成熟之前,必须经过Furin等蛋白转化酶对其进行剪切,才能发挥生物学功能.这些蛋白质中部分成员与肿瘤的发生、发展密切相关,因此Furin等蛋白转换酶活性及其对底物剪切的调控已成为肿瘤防治领域的研究靶点.研究表明Notch-1信号在胰腺癌细胞中处于高活化状态,与胰腺癌的发生及进展息息相关,阻断Notch-1激活可抑制胰腺癌细胞的生长.虽然,Furin对Notch-1的剪切是Notch-1活化的关键步骤,有关这一生物过程的调节,目前不甚清楚.几乎所有的实体瘤均存在非受体酪氨酸激酶c-Src的过度激活,它主要通过磷酸化修饰作用调节下游信号进而影响肿瘤细胞的生物学行为.猜测c-Src可能对Notch-1活化有重要的影响作用.从Notch-1信号通路、c-Src、高尔基体内Furin与Notch-1的相互作用等方面来阐述它们之间的关系.  相似文献   
39.
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109–127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.  相似文献   
40.
Abstract The silent parD ( kis/kid ) stability operon of plasmid R1 is normally repressed by the co-ordinated action of the Kis and Kid proteins. In this report it is shown that a mutation in repA , the gene of the plasmid replication protein, that reduces two-fold the copy number of the plasmid, leads to the derepression of the parD system. This derepression can be prevented by a suppressor mutation in copB, a copy number control gene of plasmid R1, that increases the efficiency of replication of the repA mutant. Derepression of the wild-type parD system leads to high plasmid stability. These data show the activation of a plasmid stability operon by a mutation that reduces the efficiency of wild-type plasmid replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号