首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1908篇
  免费   116篇
  国内免费   81篇
  2024年   4篇
  2023年   31篇
  2022年   38篇
  2021年   55篇
  2020年   43篇
  2019年   70篇
  2018年   78篇
  2017年   37篇
  2016年   39篇
  2015年   45篇
  2014年   118篇
  2013年   110篇
  2012年   111篇
  2011年   130篇
  2010年   114篇
  2009年   113篇
  2008年   124篇
  2007年   119篇
  2006年   120篇
  2005年   100篇
  2004年   81篇
  2003年   74篇
  2002年   60篇
  2001年   33篇
  2000年   27篇
  1999年   23篇
  1998年   25篇
  1997年   15篇
  1996年   16篇
  1995年   14篇
  1994年   13篇
  1993年   17篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   8篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   14篇
  1983年   8篇
  1982年   6篇
  1980年   5篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1972年   3篇
  1971年   1篇
排序方式: 共有2105条查询结果,搜索用时 265 毫秒
91.
92.
Mutations in the Drosophila trol gene cause cell cycle arrest of neuroblasts in the larval brain. Here, we show that trol encodes the Drosophila homolog of Perlecan and regulates neuroblast division by modulating both FGF and Hh signaling. Addition of human FGF-2 to trol mutant brains in culture rescues the trol proliferation phenotype, while addition of a MAPK inhibitor causes cell cycle arrest of the regulated neuroblasts in wildtype brains. Like FGF, Hh activates stem cell division in the larval brain in a Trol-dependent fashion. Coimmunoprecipitation studies are consistent with interactions between Trol and Hh and between mammalian Perlecan and Shh that are not competed with heparin sulfate. Finally, analyses of mutations in trol, hh, and ttv suggest that Trol affects Hh movement. These results indicate that Trol can mediate signaling through both of the FGF and Hedgehog pathways to control the onset of stem cell proliferation in the developing nervous system.  相似文献   
93.
94.
Based on previous studies of interleukin-1beta (IL-1beta) and both acidic and basic fibroblast growth factors (FGFs), it has been suggested that the folding of beta-trefoil proteins is intrinsically slow and may occur via the formation of essential intermediates. Using optical and NMR-detected quenched-flow hydrogen/deuterium exchange methods, we have measured the folding kinetics of hisactophilin, another beta-trefoil protein that has < 10% sequence identity and unrelated function to IL-1beta and FGFs. We find that hisactophilin can fold rapidly and with apparently two-state kinetics, except under the most stabilizing conditions investigated where there is evidence for formation of a folding intermediate. The hisactophilin intermediate has significant structural similarities to the IL-1beta intermediate that has been observed experimentally and predicted theoretically using a simple, topology-based folding model; however, it appears to be different from the folding intermediate observed experimentally for acidic FGF. For hisactophilin and acidic FGF, intermediates are much less prominent during folding than for IL-1beta. Considering the structures of the different beta-trefoil proteins, it appears that differences in nonconserved loops and hydrophobic interactions may play an important role in differential stabilization of the intermediates for these proteins.  相似文献   
95.
When (22S, 23S)-homobrassinolide (SSHB) was added at 1 g l–1 to hairy root cultures of Artemisia annua, the production of artemisinin reached to 14 mg l–1, an increment of 57% over the control. SSHB treatment led concomitantly to an increased biomass production of 15 g l–1. A stimulatory activity of SSHB on nucleic acids and soluble protein content in hairy roots was also observed at the growth stage.  相似文献   
96.
97.
The integrative nuclear FGFR1 signaling (INFS) pathway functions in association with cellular growth, differentiation, and regulation of gene expression, and is activated by diverse extracellular signals. Here we show that stimulation of angiotensin II (AII) receptors, depolarization, or activation protein kinase C (PKC) or adenylate cyclase all lead to nuclear accumulation of fibroblast growth factor 2 (FGF-2) and FGFR1, association of FGFR1 with splicing factor-rich domains, and activation of the tyrosine hydroxylase (TH) gene promoter in bovine adrenal medullary cells (BAMC). The up-regulation of endogenous TH protein or a transfected TH promoter-luciferase construct by AII, veratridine, or PMA (but not by forskolin) is abolished by transfection with a dominant negative FGFR1TK-mutant which localizes to the nucleus and plasma membrane, but not by extracellularly acting FGFR1 antagonists suramin and inositolhexakisphosphate (IP6). Mechanism of TH gene activation by FGF-2 and FGFR1 was further investigated in BAMC and human TE671 cultures. TH promoter was activated by co-transfected HMW FGF-2 (which is exclusively nuclear) but not by cytoplasmic FGF-1 or extracellular FGFs. Promoter transactivation by HMWFGF-2 was accompanied by an up-regulation of FGFR1 specifically in the cell nucleus and was prevented FGFR1(TK-) but not by IP6 or suramin. The TH promoter was also transactivated by co-transfected wild-type FGFR1, which localizes to both to the nucleus and the plasma membrane, and by an exclusively nuclear, soluble FGFR1(SP-/NLS) mutant with an inserted nuclear localization signal. Activation of the TH promoter by nuclear FGFR1 and FGF-2 was mediated through the cAMP-responsive element (CRE) and was associated with induction of CREB- and CBP/P-300-containing CRE complexes. We propose a new model for gene regulation in which nuclear FGFR1 acts as a mediator of CRE transactivation by AII, cell depolarization, and PKC.  相似文献   
98.
Vacuole fusion requires a coordinated cascade of priming, docking, and fusion. SNARE proteins have been implicated in the fusion itself, although their precise role in the cascade remains unclear. We now report that the vacuolar SNAP-23 homologue Vam7p is a mobile element of the SNARE complex, which moves from an initial association with the cis-SNARE complex via a soluble intermediate to the docking site. Soluble Vam7p is specifically recruited to vacuoles and can rescue a fusion reaction poisoned with antibodies to Vam7p. Both the recombinant Vam7p PX domain and a FYVE domain construct of human Hrs block the recruitment of Vam7p and vacuole fusion, demonstrating that phosphatidylinositol 3-phosphate is a primary receptor of Vam7p on vacuoles. We propose that the Vam7p cycle is linked to the availability of a lipid domain on yeast vacuoles, which is essential for coordinating the fusion reaction prior to and beyond docking.  相似文献   
99.
100.
A method for allelic replacement in Francisella tularensis   总被引:10,自引:0,他引:10  
A vector for mutagenesis of Francisella tularensis was constructed based on the pUC19 plasmid. By inserting the sacB gene of Bacillus subtilis, oriT of plasmid RP4, and a chloramphenicol resistance gene of Shigella flexneri, a vector, pPV, was obtained that allowed specific mutagenesis. A protocol was developed that allowed introduction of the vector into the live vaccine strain, LVS, of F. tularensis by conjugation. As a proof of principle, we aimed to develop a specific mutant defective in expression of a 23-kDa protein (iglC) that we previously have shown to be prominently upregulated during intracellular growth of F. tularensis. A plasmid designated pPV-DeltaiglC was developed that contained only the regions flanking the encoding gene, iglC. By a double crossover event, the chromosomal iglC gene was deleted. However, the resulting strain, denoted DeltaiglC1, still had an intact iglC gene. Southern blot analysis verified that LVS harbors two copies for the iglC gene. The mutagenesis was therefore repeated and a mutant defective in both iglC alleles, designated DeltaiglC1+2, was obtained. The DeltaiglC1+2 strain, in contrast to DeltaiglC1, was shown to display impaired intracellular macrophage growth and to be attenuated for virulence in mice. The developed genetic system has the potential to provide a tool to elucidate virulence mechanisms of F. tularensis and the specific F. tularensis mutant illustrates the critical role of the 23-kDa protein, iglC, for the virulence of F. tularensis LVS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号