首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109294篇
  免费   20481篇
  国内免费   3268篇
  133043篇
  2024年   169篇
  2023年   1132篇
  2022年   1869篇
  2021年   2764篇
  2020年   4631篇
  2019年   6358篇
  2018年   6455篇
  2017年   5873篇
  2016年   5637篇
  2015年   5973篇
  2014年   7893篇
  2013年   9283篇
  2012年   6600篇
  2011年   7778篇
  2010年   6289篇
  2009年   5647篇
  2008年   5825篇
  2007年   5431篇
  2006年   4983篇
  2005年   4370篇
  2004年   3784篇
  2003年   3426篇
  2002年   3029篇
  2001年   2140篇
  2000年   1569篇
  1999年   1439篇
  1998年   1139篇
  1997年   998篇
  1996年   940篇
  1995年   869篇
  1994年   787篇
  1993年   736篇
  1992年   633篇
  1991年   582篇
  1990年   451篇
  1989年   422篇
  1988年   381篇
  1987年   355篇
  1986年   318篇
  1985年   441篇
  1984年   627篇
  1983年   479篇
  1982年   519篇
  1981年   363篇
  1980年   365篇
  1979年   303篇
  1978年   222篇
  1977年   175篇
  1976年   143篇
  1975年   131篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
The biting midge Culicoides sonorensis Wirth and Jones (Diptera: Ceratopogonidae) transmits pathogens to both livestock and wildlife. Biting midge surveillance relies heavily on light traps for collection; however, little is known about the light spectra preferences of C. sonorensis midges. A light assay arena was constructed and light‐emitting diodes (LEDs) of various light spectra were used as light sources to evaluate midge photoattraction. A comparison of responses to light spectra indicated the highest proportions of C. sonorensis were attracted to ultraviolet (UV) light and that midges differentiated 10‐nm differences in wavelength. Stronger intensities of UV light resulted in greater attraction. Midges exhibited both sugar‐seeking and escape behaviours under different conditions of sugar supplementation before and during the experiment. These behaviours occurred with lights of 355 nm and 365 nm in wavelength. Based on the results of this study, the attraction of C. sonorensis to light traps can be improved through the use of bright LEDs at 355 nm or 365 nm.  相似文献   
52.
53.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
54.
Aim We propose a phylogenetic hypothesis for the marine‐derived sciaenid genus Plagioscion in the context of geomorphology and adaptation to freshwaters of South America, and assess the extent to which contemporary freshwater hydrochemical gradients influence diversification within a widely distributed Plagioscion species, Plagioscion squamosissimus. Location Amazon Basin and South America. Methods Using nuclear and mitochondrial DNA sequence data, phylogenetic analyses were conducted on the five nominal Plagioscion species, together with representatives from Pachyurus and Pachypops, using character and model‐based methods. Genealogical relationships and population genetic structure of 152 P. squamosissimus specimens sampled from the five major rivers and three hydrochemical settings/‘colours’ (i.e. white, black and clear water) of the Amazon Basin were assessed. Results Phylogenetic analyses support the monophyly of Plagioscion in South America and identify two putative cryptic species of Plagioscion. Divergence estimates suggest that the Plagioscion ancestor invaded South America via a northern route during the late Oligocene to early Miocene. Within P. squamosissimus a strong association of haplotype and water colour was observed, together with significant population structure detected between water colours. Main conclusions Our analyses of Plagioscion are consistent with a biogeographic scenario of early Miocene marine incursions into South America. Based on our phylogenetic results, the fossil record, geomorphological history and distributional data of extant Plagioscion species, we propose that marine incursions into western Venezuela between the late Oligocene and early Miocene were responsible for the adaptation to freshwaters in Plagioscion species. Following the termination of the marine incursions during the late Miocene and the establishment of the modern Amazon River, Plagioscion experienced a rapid diversification. Plagioscion squamosissimus arose during that time. The formation of the Amazon River probably facilitated population and range expansions for this species. Further, the large‐scale hydrochemical gradients within the Amazon Basin appear to be acting as ecological barriers maintaining population discontinuities in P. squamosissimus even in the face of gene flow. Our results highlight the importance of divergent natural selection through time in the generation and maintenance of sciaenid diversity in Amazonia.  相似文献   
55.
56.
57.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
58.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
59.
The melanogenic actions of the melanocortins are mediated by the melanocortin‐1 receptor (MC1R). MC1R is a member of the G‐protein‐coupled receptors (GPCR) superfamily expressed in cutaneous and hair follicle melanocytes. Activation of MC1R by adrenocorticotrophin or α‐melanocyte stimulating hormone is positively coupled to the cAMP signaling pathway and leads to a stimulation of melanogenesis and a switch from the synthesis of pheomelanins to the production of eumelanic pigments. The functional behavior of the MC1R agrees with emerging concepts in GPCR signaling including dimerization, coupling to more than one signaling pathway and a high agonist‐independent constitutive activity accounting for inverse agonism phenomena. In addition, MC1R displays unique properties such as an unusually high number of natural variants often associated with clearly visible phenotypes and the occurrence of endogenous peptide antagonists. Therefore MC1R is an ideal model to study GPCR function. Here we review our current knowledge of MC1R structure and function, with emphasis on information gathered from the analysis of natural variants. We also discuss recent data on the regulation of MC1R function by paracrine and endocrine factors and by external stimuli such as ultraviolet light.  相似文献   
60.
Abstract. The nearest‐neighbour technique is used to infer competition and facilitation between the three most abundant species in a semi‐arid region of western South Africa. Relationships among the shrubs Leipoldtia schultzei and Ruschia robusta, which are leaf‐succulent members of the Mesembryanthemaceae (‘mesembs’) and Hirpicium alienatum a non‐succulent Asteraceae, were compared on two adjacent sites with different histories of browsing intensity. Competition was more prevalent and more important than facilitation. The only evidence for facilitation was found at the heavily‐browsed site where the palatable Hirpicium was larger under the unpalatable Leipoldtia. Generally the prevalence and importance of competition was reduced at the heavily‐browsed site. Strong evidence was obtained for intraspecific competition in each of the three species; also, competition was evident between the two mesembs, where Leipoldtia was competitively dominant over Ruschia, although neither species inhibited Hirpicium. Minimal competition between the mesembs and the asteraceous shrub was interpreted in terms of differentiation in rooting depth, and competition within the mesembs, in terms of overlap in rooting depth. The mesembs had the bulk of their roots in the top 5 cm of soil, while the asteraceous shrub had the bulk of its roots, and all its fine roots, at greater depths. The shallow‐rooted morphology of the mesembs is well adapted to utilize small rainfall events, which occur frequently in the Succulent Karoo, and do not penetrate the soil deeply. Modifications of existing methods are applied for analysing nearest‐neighbour interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号