首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7962篇
  免费   696篇
  国内免费   441篇
  2024年   17篇
  2023年   133篇
  2022年   146篇
  2021年   286篇
  2020年   388篇
  2019年   656篇
  2018年   352篇
  2017年   192篇
  2016年   199篇
  2015年   284篇
  2014年   413篇
  2013年   792篇
  2012年   419篇
  2011年   441篇
  2010年   321篇
  2009年   306篇
  2008年   357篇
  2007年   343篇
  2006年   424篇
  2005年   458篇
  2004年   359篇
  2003年   375篇
  2002年   413篇
  2001年   344篇
  2000年   188篇
  1999年   181篇
  1998年   135篇
  1997年   73篇
  1996年   44篇
  1995年   25篇
  1994年   14篇
  1993年   7篇
  1992年   5篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
排序方式: 共有9099条查询结果,搜索用时 328 毫秒
21.
22.
Rat sympathetic neurons undergo programmed cell death (PCD) in vitro and in vivo when they are deprived of nerve growth factor (NGF). Chronic depolarization of these neurons in cell culture with elevated concentrations of extracellular potassium ([K+]o) prevents this death. The effect of prolonged depolarization on neuronal survival is thought to be mediated by a rise of intracellular calcium concentration ([Ca2+]i) caused by Ca2+ influx through voltage-gated channels. In this report we investigate the effects of chronic treatment of rat sympathetic neurons with thapsigargin, an inhibitor of intracellular Ca2+ sequestration. In medium containing a normal concentration of extracellular Ca2+ ([Ca2+]o), thapsigargin caused a sustained rise of intracellular Ca2+ concentration and partially blocked death of NGF-deprived cells. Elevating [Ca2+]o in the presence of thapsigargin further increased [Ca2+]i, suggesting that the sustained rise of [Ca2+]i was caused by a thapsigargin-induced Ca2+ influx. This treatment potentiated the effect of thapsigargin on survival. The dihydropyridine Ca2+ channel antagonist, nifedipine, blocked both a sustained elevation of [Ca2+]i and enhanced survival caused by depolarization with elevated [K+]o, suggesting that these effects are mediated by Ca2+ influx through L-type channels. Nifedipine did not block the sustained rise of [Ca2+]i or enhanced survival caused by thapsigargin treatment, indicating that these effects were not mediated by influx of Ca2+ through L-type channels. These results provide additional evidence that increased [Ca2+]i can suppress neuronal PCD and identify a novel method for chronically raising neuronal [Ca2+]i for investigation of this and other Ca2+-dependent phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   
23.
Seizures set in motion complex molecular and morphological changes in vulnerable structures, such as the hippocampal complex. A number of these changes are responsible for neuronal death of CA3 and hilar cells, which involves necrotic and apoptotic mechanisms. In surviving dentate granule cells seizures induce an increased expression of tubulin subunits and microtubule-associated proteins, suggesting that an overproduction of tubulin polymers would lead to a remodeling of mossy fibers (the axons of granule cells). In fact, these fibers sprout in the dentate gyrus to innervate granule cell dendrites, creating recurrent excitatory circuits. In contrast, terminal mossy fibers do not sprout in the CA3 field. Navigation of mossy fiber's growth cones may be facilitated by astrocytes, which would exert differential effects by producing and excreting cell adhesion and substrate molecules. In the light of the results discussed here, we suggest that in adult brain activated-resident astrocytes (nonproliferating, tenascin-negative, neuronal cell-adhesion molecule-positive astrocytes) could contribute to the process of axonal outgrowth and synaptogenesis in the dentate gyrus, while proliferating astrocytes, tenascin-positive, could impede any axonal rearrangement in CA3. © 1995 John Wiley & Sons, Inc.  相似文献   
24.
25.
It is now well documented that apoptosis represents the prevalent mode of cell death in hybridoma cultures. Apoptotic or programmed cell death occurs spontaneously in late exponential phase of batch cultures. Until lately, no specific triggering factors had been identified. Recently, we observed that glutamine, cystine or glucose deprivation induced apoptosis in both hybridoma and myeloma cell lines whereas accumulation of toxic metabolites induced necrotic cell death in these cells. Other triggering factors such as oxygen deprivation might also be responsible for induction of apoptosis. In the present study, induction of cell death by exposure to anoxia was examined in batch culture of the SP2/0-derived hybridoma D5 clone. The mode of cell death was studied by morphological examination of acridine orange-ethidium bromide stained cells in a 1.5 L bioreactor culture grown under anoxic conditions for 75 hours. Under such conditions, viable cell density levelled off rapidly and remained constant for 25 hours. After 45 hours of anoxia, cell viability had decreased to 30% and the dead cell population was found to be 90% apoptotic. In terms of cellular metabolism, anoxia resulted in an increase in the utilization rates of glucose and arginine, and in a decrease in the utilization rate of glutamine. The lactate production rate and the yield of lactate on glucose increased significantly while the MAb production rate decreased. These results demonstrate that glycolysis becomes the main source of energy under anoxic conditions.Cells incubated for 10 hours or less under anoxic conditions were able to recuperate almost immediately and displayed normal growth rates when reincubated in oxic conditions whereas cells incubated for 22 hours or more displayed reduced growth rates. Nonetheless, even after 22 h or 29 h of anoxia, cells reincubated in oxic conditions showed no further progression into apoptosis. Therefore, upon removal of the triggering signal, induction of apoptosis ceased.Abbreviations VNA Viable non-apoptotic cells - VA Viable apoptotic cells - NVNA Nonviable non-apoptotic or necrotic cells - NVA Nonviable apoptotic cells - CF Chromatin-free cells (late nonviable apoptotic cells) - AO Acridine orange - EB Ethidium Bromide - MAb Monoclocnal antibody - D.O. Dissolved oxygen - qMAb Specific MAb production rate (mg. (109 cells)–1.day–1) - Specific growth rate (h–1) - Xv Viable cell number (105 cells.mL–1) - Xt Total cell number (105 cells.mL–1) - Ylac/glc Yield coefficient of lactate on glucose (mM lactate produced/mM glucose consumed)  相似文献   
26.
Abnormal apoptosis of vascular endothelial cells is an important feature of arteriosclerosis (AS). Here, we induced apoptosis in human umbilical vein endothelial cells (HUVECs) using transforming growth factor-β (TGF-β), and investigated the role of antiapoptotic E3 ubiquitin ligase (AREL1) in the apoptosis of vascular endothelial cells. We proved that AREL1 is downregulated in TGF-β treated HUVECs. The overexpression of AREL1 inhibits the activation of Caspase-3 and Caspase-9 and attenuates cell apoptosis induced by TGF-β. According to the result of coimmunoprecipitation, AREL1 interacts with the proapoptotic proteins the second mitochondria-derived activator of caspases (SMAC) in TGF-β treated HUVECs. In addition, miR-320b inhibits the expression of AREL1, and the overexpression of AREL1 attenuates the apoptosis induced by miR-320b mimics in HUVECs. In conclusion, AREL1 is downregulated by miR-320b. AREL1 overexpression inhibits TGF-β induced apoptosis through downregulating SMAC in vascular endothelial cells. Our study explores pathogenesis regulation mechanism and new biological therapeutic targets for vascular disease.  相似文献   
27.
This study investigated that dieckol (DKL), a natural drug, inhibits colon cancer cell proliferation and migration by inhibiting phosphoinositide-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) phosphorylation in HCT-116 cells. The cells were treated with DKL in various concentrations (32 and 50 μM) for 24 h and then analyzed for various experiments. MTT (tetrazolium bromide) and crystal violet assay investigated DKL-mediated cytotoxicity. Dichlorodihydrofluorescein diacetate staining was used to assess the reactive oxygen species (ROS) measurement, and apoptotic changes were studied by dual acridine orange and ethidium bromide staining. Protein expression of cell survival, cell cycle, proliferation, and apoptosis protein was evaluated by western blot analysis. Results indicated that DKL produces significant cytotoxicity in HCT-116, and the half-maximal inhibitory concentration was found to be 32 μM for 24-h incubation. Moreover, effective production of ROS and enhanced apoptotic signs were observed upon DKL treatment in HCT-116. DKL induces the expression of phosphorylated PI3K, AKT, and mToR-associated enhanced expression of cyclin-D1, proliferating cell nuclear antigen, cyclin-dependent kinase (CDK)-4, CDK-6, and Bcl-2 in HCT-116. In addition, proapoptotic proteins such as Bax, caspase-9, and caspase-3 were significantly enhanced by DKL treatment in HCT-116. Hence, DKL has been considered a chemotherapeutic drug by impeding the expression of PI3K-, AKT-, and mTOR-mediated inhibition of proliferation and cell cycle-regulating proteins.  相似文献   
28.
产肠毒素大肠杆菌(enterotoxigenic Escherichia coli, ETEC)是引起人和动物腹泻的重要病原菌之一,其中黏附素和肠毒素是其感染引起腹泻的主要毒力因子。首先,黏附素介导ETEC与宿主小肠上皮细胞的黏附和定殖。随后,定殖的细菌产生肠毒素,导致水、电解质代谢紊乱,最终引起水样腹泻。传统的观点认为ETEC属于非侵袭性大肠杆菌,并不会引起肠上皮细胞凋亡和破坏肠道的屏障结构。但是越来越多的研究证据表明,在体外和体内ETEC感染均可诱导肠上皮细胞凋亡,破坏宿主肠黏膜屏障的完整性,促进疾病发展。本文将就ETEC不同毒力因子诱导细胞凋亡的具体机制、细胞凋亡与疾病发展的相关性以及在临床如何利用抗凋亡治疗预防ETEC感染等方面进行综述,旨为进一步深入阐明ETEC的分子致病机制提供参考,为防治ETEC引起的腹泻提供新策略。  相似文献   
29.
30.
RNF7 has been reported to play critical roles in various cancers. However, the underlying mechanisms of RNF7 in glioma development remain largely unknown. Herein, the expression level of RNF7 was examined in tissues by quantitative real-time PCR, Western blotting and immunohistochemistry. The effect of RNF7 on glioma progression was measured by performing CCK-8 and apoptosis assays, cell cycle-related experiments and animal experiments. The effect of RNF7 on PI3K/AKT signalling pathway was tested by Western blotting. First, we found that RNF7 was upregulated in tumour tissue compared with normal brain tissue, especially in high-grade glioma, and the high expression of RNF7 was significantly related to tumour size, Karnofsky Performance Scale score and a poor prognosis. Second, RNF7 overexpression facilitated tumour cell cycle progression and cell proliferation and suppressed apoptosis. Conversely, RNF7 knockdown suppressed tumour cell cycle progression and cell proliferation and facilitated apoptosis. Furthermore, follow-up mechanistic studies indicated that RNF7 could facilitate glioma cell proliferation and cell cycle progression and inhibit apoptosis by activating the PI3K/AKT signalling pathway. This study shows that RNF7 can clearly promote glioma cell proliferation by facilitating cell cycle progression and inhibiting apoptosis by activating the PI3K/AKT signalling pathway. Targeting the RNF7/PI3K/AKT axis may provide a new perspective on the prevention or treatment of glioma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号